Обмен веществ как основное условие обеспечения жизнедеятельности и сохранения гомеостаза

Обновлено: 02.07.2024

Цель урока: представлять схему обмена питательных веществ в организме, значение воды и минеральных веществ для нормальной жизнедеятельности, общую характеристику обмена энергии, основной обмен и рабочую прибавку, пути повышения теплопродукции, знать роль витаминов их классификацию и возможные заболевания.

План изложения нового материала

1. Общая характеристика обмена веществ и энергии

2. Виды обмена веществ: водно-солевой обмен, белков, углеводов, жиров

4. Распад и окисление питательных веществ

Общая характеристика обмена веществ и энергии

В организм человека поступают вещества (белки, жиры, углеводы), витамины, вода и минеральные соли. Кислород воздуха проникает в кровь через легкие, частично — через кожу. Они необходимы клеткам и тканям, в которых происходят биохимические процессы, образуются специфические вещества (полезные и вредные) и энергия Продукты обмена веществ (экскреты) выводятся через почки, легкие, кожу и органы желудочно-кишечного тракта.

Обмен веществ и энергии ( метаболизм) — это совокупность физиологических процессов , направленных на обеспечение организма необходимыми для его жизнедеятельности веществами, их превращение и использование для получения энергии и построения клеточных структур, и в конечном итоге на удаление во внешнюю среду ненужных продуктов происшедших реакций. Метаболизм — это превращение в организме сложных веществ в простые и удаление продуктов распада.

Метаболизм связан с процессами синтеза и распада различных структур. В клетках образуются разнообразные вещества, используемые для построения, обновление структур клеток Синтез новых веществ проходит с затратой энергии . Процесс синтеза веществ называется анаболизмом, ассимиляцией . Это пластический обмен веществ , которому необходима энергия ,она образуется при распаде сложных полимеров на мономеры, воду, углекислый газ.

Реакции расщепления питательных веществ с выделением энергии , называется катаболизмом, диссимиляцией . Они сопровождаются энергетическим обменом веществ с участием ферментов.
Метаболизм включает процессы анаболизм и катаболизм, которые происходят в организме постоянно в течение всей жизни .Процессы анаболизма преобладают в детском возрасте, необходимы для роста. Преобладание процессов диссимиляции ведут к истощению, старению, гибели организма.
Питательные вещества, минеральные соли имеют определенное значение для организма, для них характерны свои процессы метаболизма, витамины играют в основном роль катализаторов биохимических процессов, так как большинство из них входят в состав ферментов.

Обмен воды и минеральных солей.

Обмен воды. На долю воды в организме приходится в среднем 65-70% массы тела. В разных органах процент воды отличается.

в костях около 20%

в головном мозге около 95%

Вода бывает внеклеточная и внутриклеточная. Около 300 мл образуется в организме в результате метаболизма.
С продуктами питания, при питье в сутки необходимо 1,5-2,5 л воды, такое же количество воды должно удаляться из организма: с потом 0,5л , с мочой 1,5л , при дыхании 0,5л ,с калом 0,1 л, что зависит от окружающей температуры воздуха

Вода выполняет жизненно важные функции:

1) растворитель веществ для метаболитических процессов

2) с водой в организм поступают минеральные вещества, водорастворимые витамины

3) участвует в терморегуляции, выделяясь с потом

4) участвует в биохимических процессах

Нарушение водного обмена связано с а) обезвоживанием организма при кровотечении, рвоте, диарее, опасно для жизни б) задержка в организме с образованием отеков, асцита. В подкожно-жировой клетчатке задержка воды - анасарка.

Минеральные вещества выполняют разнообразные функции..Общий вес минеральных веществ 4-5% от массы тела

регулирует кислотность и осмотическое давление крови, проводят импульсы

процессы возбуждения и торможения

поддерживает водно-солевой обмен влияет на работу мышц, миокарда, проводит нервные импульсы

картофель,греча,яблоки,абрикосы, курага, хлеб, мясо

процессы возбуждения и торможения

сердечнососудистую систему, передача нервных импульсов в синапсах, в гемостазе

молочные продукты, яйца, греча,горох,лук

сердечнососудистые, костной системы

нуклеиновые кислоты ,костной системе

зерновые и бобовые продукты

кроветворение, образование гемоглобина, процесс дыхания

костеобразование, обмен углеводов, сосудорасширяюшее действие, деторождение , снижает нервное возбуждение, улучшает половую функцию

глухота, деформация суставов

образование гормонов щитовидной железы

морская рыба и морские продукты питания, салат иодированный(красный),шампиньоны

построение зубов, костей

морские продукты, чай,изюм, тыква,просо,орех

для функции половых желез, кроветворения, в состав ферментов

аллергия, инфекционные болезни, пятна на ногтевых пластинках

кроветворения, тканевого дыхания, образование коллагена, меланина, в состав ферментов

мясо,рыба, продукты моря,греча,овсянка,картофель,орех

анемия, облысение, дерматозы

влияет на выработку иммунитета,задерживает развитие онкоклеток, для образования семенной жидкости

морская рыба и морские продукты, печень,мясо, яйца,дрожжи,подсолнух

регулирует обмен холестерина,образование инсулина

нарушение функции ногтей, волос,кожи,костей

для построение костей, эмали,половых гормонов,ЖВС,

остеопороз, эрозия и рак женских половых органов

для щитовидной железы, ЦНС(успокаивает

сердечнососудистую систему, снижает уровень холестерина, улучшает зрение

сахарный диабет, атеросклероз

кроветворение,образование витаминаВ12,всостав ферментов,

кроветворение,ЖВС,снижает артериальное давление крови,

чечевица, бобовые,груша, кукуруза,

влияет на иммунитет

бактерицидное,противовоспалительное,вяжущее действие, как антибиотик

Обмен белков.

"Жизнь — есть способ существования белковых тел" Ф.Энгельс. Все живое состоит из азотсодержащих веществ белков. Это полимеры-полипептиды, состоящие из мономеров- аминокислот (10 являются заменимыми, 10 незаменимыми).
Заменимые аминокислоты могут образовывать из других аминокислот, незаменимые должны поступать с пищей. Белки пищи, содержащие полный набор аминокислот, называются полноценными животного происхождения. Отсутствие в пищевом рационе даже одной аминокислоты приводит к заболеваниям.

Переваривание белков начинается в желудке под действием пепсина, он расщепляет их на молекулы меньшего размера.

В тонкой кишке ферменты кишечного и панкреатического соков (трипсин, химотрипсин, карбоксипептидаза, аминопептидаза) расщепляют белки до аминокислот, которые и всасываются в кровь в тонкой кишке. С током крови они проходят через печень, где гепатоциты синтезируют из аминокислот белки крови свертывающей системы( протромбин). Аминокислоты переносятся ко всем органам и тканям. для построения собственных белков, специфичных для организма. Синтез белков (первичная структура ) происходит на рибосомах под действием ферментов, затем образование вторичной, третичной структуры в комплексе Гольджи.

Белки азотсодержащие вещества. Организму в сутки необходимо 100— 110 г белка. Соотношение количества азота, поступившего в организм и удаленного из него, называют азотистым балансом. У взрослого человека в норме количество белка, поступившего в организм, равно количеству распавшегося. Это соотношение можно определить понятием азотистое равновесие. В детском возрасте для роста ребенка необходимо больше белков, чем выделяется , как и больным при выздоровлении. Это положительный азотистый баланс . В старческом возрасте, при длительном голодании и у ослабленных больных преобладает распад белков над его поступлением — это отрицательный азотистый баланс, или азотистый дефицит .

1)пластическая, входят в состав всех клеток, тканей

2)ферментативная - ферменты - это белки

3)регуляторная , гормоны , медиаторы - это белки Гормон роста (соматотропин), гормоны щитовидной железы (тироксин, трийодтиронин) оказывают анаболическое действие на метаболизм белков.

4)энергетическая , при расщеплении 1 г белка образуется 4,1 ккал тепла

5)специфические функции (актин и миозин в мышечной ткани выполняют сократительную, фибриноген сыворотки крови — свертывающую, иммуноглобулины крови — защитную и т.д.

Белки не депонируются в организме и при их дефиците происходит разрушение белков, они участвуют преимущественно в пластическом обмене. Конечный распад белков приводит к образованию воды, углекислого газа и аммиака, который затем преобразуется в мочевину.

Обмен углеводов

Углеводы поступают в организм в основном в виде полисахаридов (крахмала и гликогена) и дисахаридов (например, сахарозы). Ферменты слюны амилаза и мальтаза , кишечного и панкреатического сока продолжают действовать на углеводы и расщепляют их до моносахаридов (глюкоза, фруктоза.), которые всасываются в кишечнике. По воротной вене глюкоза поступает в печень, где образуется гликоген, полимер глюкозы. При мышечной нагрузке гликоген расщепляется на моносахариды, которые поступают в кровь, к органам и тканям Гликоген образуется и в мышечной ткани, во внутренних органах, кроме головного мозга Углеводный обмен регулирует поджелудочная железа, вырабатывающая гормон инсулин, он уменьшает количество сахара в крови. К гормонам, увеличивающим количество глюкозы в плазме крови, относятся адреналин, глюкагон.. Нормальная концентрация глюкозы в крови — 4,2 —6,4 ммоль/л. Понижение уровня глюкозы ниже 4,2 ммоль/л называется гипогликемией. Повышение выше нормы — гипергликемией. Суточное количество углеводов 400-500г.

Функции углеводов:

1. энергетическая функция - при распаде 1 г глюкозы выделяется 4,1 ккал энергии.

2.пластическая функция- излишнее количество углеводов превращается в жиры, жирные кислоты

Конечные продукты выводятся через почки вода и легкие (С02).При недостатке глюкозы в крови возникает обморок. Больше других органов в глюкозе нуждается головной мозг.

Обмен жиров.

Жиры плохо растворяются в воде. После обработки пищи в ротовой полости и желудке химус содержит их в виде крупных скоплений, капель. Желчные кислоты, содержащиеся в желчи, эмульгируют жиры, образуют из них мелкие капли и на нейтральные жиры начинают действовать липазы кишечного и панкреатического соков, а на сложные жиры фосфолипиды - фосфолапаза. Жиры расщепляются на жирные кислоты и глицерин., которые всасываются в лимфу ворсинок тонкого кишечника . С током лимфы липиды попадают в кровь ко всем клеткам и тканям. Больше всего липидов в жировой ткани (до 90%) подкожной жировой клетчатке -гиподерме . В сутки необходимо около 100 г жиров. Соотношение белков: жиров: углеводов - 1:1:4.

Употребление большого количества жиров приводит к ожирению, образованию бляшек в сосудах и развитию атеросклероза, нарушению кровотока, образованию камней в желчных путях. Жиры могут синтезироваться из белков и углеводов.

Функции липидов:

1) пластическая - входят в структуры клеток ( мембраны);

2) энергетическая -при их распаде 1 г жира образуется 9,3 ккал

3) гормональная- половые гормоны стероидного происхождения, жироподобные вещества

4) в организм поступают жирорастворимые витамины (A, D, Е, К);

5)терморегуляторная -жиры подкожной жировой клетчатки участвуют в поддержании температурного гомеостаза организма.

6)источник воды-при окислении 100г жира образуется 118 мл. воды.

Витамины делятся на жирорастворимые и водорастворимые. Жирорастворимые витамины поступают в организм с жирами пищи, без которых невозможно их всасывание. Обозначаются витамины латинскими буквами и имеют название. Жирорастворимые витамины A, D, Е, К. Водорастворимые витамины группы В, С.

таблица 14 Витамины

расстройства,заболе-

жирорастворимые витамины

на рост,выработку родопсина

куриная слепота, ксерофтальмия

ультрафиолетовое излучение,яйца,масло,молоко,рыбий жир

злаки, масло, зеленые овощи, шпинат

противостерильный, от бесплодия,на половую систему

крапива,образуется в толстом кишечнике,шпинат, капуста

водорастворимые витамины

антицинготный,повышает сопротивляемость к инфекциям, простуде,на построение коллагена

укрепляет стенку капилляров

синтезируется в кишечнике,мясо,печень,яйца,дрожжи

пеллагра(три Д) дерматит,диарея,деменция. анемия

влияет на нервную систему

синтезируется в кишечнике

синтезируется в желудке,содержится в печени,мясе,яйцах

антианемический,влияет на кроветвореие

синтезируется в толстом кишечнике

В продуктах питания часто находятся провитамины, которые в организме превращаются в активные витамины, например, каротин моркови в ретинол.

Распад и окисление органических веществ в клетках

Для жизнедеятельности организма постоянно требуется энергия. Она образуется при распаде органических соединений — в основном углеводов и жиров, в меньшей степени — белков. Белки нужны организму человека для обеспечения анаболических процессов. Энергия выделяется при разрушении химических связей.

Для окислительных процессов в организме необходим кислород . Дефицит кислорода наблюдается в клетках при чрезмерной физической нагрузки. . При окислении веществ образуется молочная кислота. При значительном накоплении молочной кислоты возникают болезненные ощущения, связанные с закислением внутренней среды организма.

1.Теплопроведение— это отдача тепла через непосредственное соприкосновение тела человека с другими физическими телами (например, одеждой, водой). (15 %)

2.Излучение—это отдача тепла в окружающую среду поверхностью тела посредством инфракрасных волн.( воздух аудиторий нагревается) ( 66%)

Конвекция— способ отдачи тепла при контакте тела с движущимися потоками воздуха.

3. Теплоиспарение - это отдача тепла испарением пота с поверхности тела при физической работе или влаги с поверхности слизистых оболочек (19%.). Количество жидкости за 1 час может выделится при физической работе до 2 литров. 1 мл пота выделяет 0,58 ккал тепла.

Основную роль в теплоотдаче играет кожа. При высокой температуре воздуха кровеносные сосуды расширяются , усиливается потоотделение . При пониженной температуре воздуха сосуды суживаются и тепло сохраняется в организме.
На отдачу тепла имеют значение влажность воздуха, движение ветра, одежда, температура воздуха, физическая работа.

Регуляция обмена веществ

Регуляция теплообмена происходит нейрогуморальным путем.
Центр терморегуляции находится в гипоталамусе (промежуточном мозге, к нему поступают импульсы от терморецепторов, которые воспринимают изменение температуры различных участков тела человека даже на 0,01 градуса. Этот отдел головного мозга включает в себя важные центры обмена веществ: голода и насыщения, жажды, терморегуляции через вегетативную нервную систему. Эндокринная система оказывает решающее влияние на регуляцию обмена веществ и энергии. Гормоны действуют на биохимические превращения непосредственно в клетке, вызывая изменения в функциях всего организма. Соматотропный гормон гипофиза оказывает анаболическое действие, ускоряя синтез пластических веществ, ускоряет рост. Гормоны мозгового вещества надпочечников усиливают окислительные процессы, энергообразование. Тироксин и трийодтиронин (гормоны щитовидной железы) стимулируют синтез белка из аминокислот и разрушение жиров и углеводов .


Метаболизм – обмен веществ и энергии - представляет собой по классическим определениям, с одной стороны, обмен веществами и энергией между организмом и окружающей средой, а, с другой стороны, совокупность процессов превращения веществ и трансформации энергии, происходящих непосредственно в самих живых организмах. Как известно, обмен веществ и энергии является основой жизнедеятельности организмов и принадлежит к числу важнейших специфических признаков живой материи. В обмене веществ, контролируемом многоуровневыми регуляторными системами, участвует множество ферментных каскадов, обеспечивающих совокупность химических реакций, упорядоченных во времени и пространстве. Данные биохимические реакции, детерминированные генетически, протекают последовательно в строго определенных участках клеток, что, в свою очередь обеспечивается принципом компартментации клетки. В конечном итоге в процессе обмена поступившие в организм вещества превращаются в собственные специфические вещества тканей и в конечные продукты, выводящиеся из организма. В процессе любых биохимических трансформаций освобождается и поглощается энергия.

Клеточный метаболизм выполняет четыре основные специфические функции, а именно: извлечение энергии из окружающей среды и преобразование ее в энергию макроэргических (высокоэнергетических) химических соединений в количестве, достаточном для обеспечения всех энергетических потребностей клетки; образование из экзогенных веществ промежуточных соединений, являющихся предшественниками высокомолекулярных компонентов клетки; синтез из этих предшественников белков, нуклеиновых кислот, углеводов, липидов и других клеточных компонентов; синтез и разрушение специальных биомолекул, образование и распад которых связаны с выполнением специфических функций данной клетки.

Поскольку первоначальные представления об обмене веществ возникли в связи с изучением процессов обмена между организмом и внешней средой и лишь впоследствии эти представления расширились до понимания путей трансформации веществ и энергии внутри организма, до настоящего времени принято выделять соответственно внешний, или общий, обмен веществ и внутренний или промежуточный, обмен веществ. В свою очередь как во внутреннем, так и во внешнем обмене веществ различают структурный (пластический) и энергетический обмен. Под структурным обменом понимают взаимные превращения различных высоко- и низкомолекулярных соединений в организме, а также их перенос (транспорт) внутри организма и между организмом и внешней средой. Под энергетическим обменом понимают высвобождение энергии химических связей молекул, образующейся в ходе реакций и ее превращение в тепло (большая часть), а также использование энергии на синтез новых молекул, активный транспорт, мышечную работу (меньшая часть). В процессе обмена веществ часть конечных продуктов химических реакций выводится во внешнюю среду, другая часть используется организмом. В этом случае конечные продукты органического обмена накапливаются или расходуются в зависимости от условий существования организма, называясь запасными или резервными веществами.

Как указывалось выше совокупность химических превращений веществ, которые происходят непосредственно в организме, начиная с момента их поступления в кровь и до момента выделения конечных продуктов обмена из организма, называют промежуточным обменом (промежуточным метаболизмом). Промежуточный обмен может быть разделен на два процесса: катаболизм (диссимиляция) и анаболизм (ассимиляция). Катаболизмом называют ферментативное расщепление крупных органических молекул, осуществляемое у всех высших организмов, как правило, окислительным путем. Катаболизм сопровождается освобождением энергии, заключенной в химических связях органических молекул, и резервированием ее в форме энергии фосфатных связей молекулы аденозинтрифосфорной кислоты (АТФ). Анаболизм, напротив, представляет собой ферментативный синтез крупномолекулярных клеточных компонентов, таких, как полисахариды, нуклеиновые кислоты, белки, липиды, а также некоторых их биосинтетических предшественников из более простых соединений. Анаболические процессы происходят с потреблением энергии. Процессы катаболизма и анаболизма происходят в клетках одновременно, неразрывно связаны друг с другом и являются обязательными компонентами одного общего процесса — метаболизма, в котором превращения веществ теснейшим образом переплетены с превращениями энергии. Катаболические и анаболические реакции различаются, как правило, локализацией в клетке. Например, окисление жирных кислот до углекислого газа и воды осуществляется с помощью набора митохондриальных ферментов, тогда как синтез жирных кислот катализирует другая система ферментов, находящихся в цитозоле. Именно благодаря разной локализации катаболические и анаболические процессы в клетке могут протекать одновременно. При этом все превращения органических веществ, процессы синтеза и распада взаимосвязаны, координированы и регулируются нейрогормональными механизмами, придающими химическим процессам нужное направление. В организме человека не существует самостоятельного обмена белков, жиров, углеводов и нуклеиновых кислот. Все превращения объединены в целостный процесс метаболизма, допускающий также взаимопревращения между отдельными классами органических веществ. Подобные взаимопревращения диктуются физиологическими потребностями организма, а также целесообразностью замены одних классов органических веществ другими в условиях блокирования какого-либо процесса при патологии.

Согласно современным представлениям расщепление основных пищевых веществ в клетке представляет собой ряд последовательных ферментативных реакций, составляющих три главные стадии катаболизма. На первой стадии полимерные органические молекулы распадаются на составляющие их специфические структурные блоки - мономеры. Так, полисахариды расщепляются до гексоз или пентоз, белки — до аминокислот, нуклеиновые кислоты — до нуклеотидов и нуклеозидов, липиды — до жирных кислот и глицерина. Эти реакции протекают в основном гидролитическим путем и количество энергии, освобождающейся на этой стадии, не превышает 1% от всей выделяемой в ходе катаболизма энергии, и почти целиком используется организмом в качестве тепла.

На второй стадии катаболизма продуктами химических реакций становятся еще более простые молекулы, унифицированные для углеводного, белкового и липидного обмена. по своему типу (гликолиз, катаболизм аминокислот, β-окисление жирных кислот соответственно). Принципиальным является то, что на второй стадии катаболизма образуются продукты, которые являются общими для обмена исходно разных групп веществ. Эти продукты представляют собой ключевые химические соединения, соединяющие разные пути метаболизма. К таким соединениям относятся, например, пируват (пировиноградная кислота), образующийся при распаде углеводов, липидов и многих аминокислот, ацетил-КоА, объединяющий катаболизм жирных кислот, углеводов и аминокислот, a-кетоглутаровая кислота, оксалоацетат (щавелевоуксусная кислота), фумарат (фумаровая кислота) и сукцинат (янтарная кислота), образующиеся при трансформации аминокислот. Продукты, полученные на второй стадии катаболизма, вступают в третью стадию, которая известна как цикл трикарбоновых кислот (терминальное окисление, цикл лимонной кислоты, цикл Кребса). На третьем этапе ацетил-КоА и некоторые другие метаболиты, например α-кетоглутарат, оксалоацетат, подвергаются окислению в цикле ди- и трикарбоновых кислот Кребса. Окисление сопровождается образованием восстановленных форм НАДН + Н+ и ФАДН2. Именно в ходе второй и третьей стадий катаболизма освобождается и аккумулируется в виде АТФ практически вся энергия химических связей подвергнутых диссимиляции веществ. При этом осуществляется перенос электронов от восстановленных нуклеотидов на кислород через дыхательную цепь, сопровождающийся образованием конечного продукта – молекулы воды. Транспорт электронов в дыхательной цепи сопряжен с синтезом АТФ в процессе окислительного фосфорилирования.

Главным катаболическим процессом в обмене веществ принято считать биологическое окисление - совокупность реакций окисления, протекающих во всех живых клетках, - а именно дыхание и окислительное фосфорилирование. Интегральной характеристикой биологического окисления служит так называемый дыхательный коэффициент (RQ), который представляет собой отношение объема выделенного организмом углекислого газа к объему одновременно поглощенного кислорода. При окислении углеводов объем расходуемого кислорода соответствует объему образующегося углекислого газа и поэтому дыхательный коэффициент в этих случаях равен единице. При окислении жиров и белков такое соответствие отсутствует, поскольку кроме окисления углерода до углекислого газа часть кислорода расходуется на окисление водорода с образованием воды. Вследствие этого величины дыхательного коэффициента в случае окисления жиров и белков составляют соответственно около 0, 7 и 0, 8. Подавляющая часть белкового азота при окислении белка в организме переходит в мочевину. Поэтому по дыхательному коэффициенту и данным о количестве выделяемой мочевины можно определять соотношение участвующих в биологическом окислении углеводов, жиров и белков.

В процессе обмена веществ постоянно происходит превращение энергии: потенциальная энергия сложных органических соединений, поступивших с пищей, превращается в тепловую, механическую и электрическую. Энергия расходуется не только на поддержание температуры тела и выполнение работы, но и на воссоздание структурных элементов клеток, обеспечение их жизнедеятельности, роста и развития организма. Тем не менее, только часть получаемой при окислении белков, жиров и углеводов энергии используется для синтеза АТФ, другая, значительно большая, превращается в теплоту. Так, при окислении углеводов 22, 7% энергии химических связей глюкозы в процессе окисления используется на синтез АТФ, а 77, 3% в виде тепла рассеивается в тканях. Аккумулированная в АТФ энергия используемая в дальнейшем для механической работы, химических, транспортных, электрических процессов в конечном счете тоже превращается в теплоту. Следовательно, количество тепла, образовавшегося в организме, становится мерой суммарной энергии химических связей, подвергшихся биологическому окислению. Поэтому вся энергия, образовавшаяся в организме, может быть выражена в единицах тепла — калориях или джоулях.

Общий баланс энергии организма определяют на основании калорийности вводимых пищевых веществ и количества выделенного тепла, которое может быть измерено или рассчитано. При этом надо учитывать, что величина калорийности, получаемая при лабораторной калориметрии, может отличаться от величины физиологической калорической ценности, поскольку некоторые вещества в организме не сгорают полностью, а образуют конечные продукты обмена, способные к дальнейшему окислению. В первую очередь это относится к белкам, азот которых выделяется из организма главным образом в виде мочевины, сохраняющей некоторый потенциальный запас калорий. Очевидно, что калорическая ценность, дыхательный коэффициент и величина теплообразования для разных веществ различны. Физиологическая калорическая ценность (в ккал/г) составляет для углеводов — 4, 1; липидов — 9, 3; белков — 4, 1; величина теплообразования (в ккал на 1 литр потребленного кислорода) для углеводов составляет 5, 05; липидов — 4, 69; белков — 4, 49.

Процесс анаболизма по аналогии с катаболическими процессами также проходит три стадии. При этом исходными веществами для анаболических процессов служат продукты второй стадии и промежуточные соединения третьей стадии катаболизма. Таким образом вторая и третья стадии катаболизма являются в то же время первой, исходной стадией анаболизма и химические реакции, протекающие в данном месте и в данное время, выполняют по сути двойную функцию. С одной стороны, они являются основой завершающего этапа катаболизма, а с другой — служат инициацией для анаболических процессов, поставляя вещества-предшественники для последующих стадий ассимиляции. Подобным образом, например, начинается синтез белка. Исходными реакциями этого процесса можно считать образование некоторых a-кетокислот. На следующей, второй стадии в ходе реакций аминирования или трансаминирования эти кетокислоты превращаются в аминокислоты, которые на третьей стадии анаболизма объединяются в полипептидные цепи. В результате ряда последовательных реакций происходит также синтез нуклеиновых кислот, липидов и полисахаридов. Тем не менее следует подчеркнуть, что пути анаболизма не являются простым обращением процессов катаболизма. Это связано прежде всего с энергетическими особенностями химических реакций. Некоторые реакции катаболизма практически необратимы, поскольку их протеканию в обратном направлении препятствуют непреодолимые энергетические барьеры. Поэтому в ходе эволюции были выработаны другие, специфические для анаболизма реакции, где синтез олиго- и полимерных соединений сопряжен с затратой энергии макроэргических соединений, прежде всего – АТФ.


Пища представляет собой комплекс предшественников лекарств, из которых в организме образуются естественные лекарства: гормоны, трансмиттеры, ферменты, рецепторы, биомолекулы (ДНК, РНК) и все структурные элементы живого организма. В связи с этим становится актуальной разработка биологических интегральных методов оценки безвредности пищевых средств и готовой продукции в модельных опытах на живых клетках, в которых возникает первичный лечебный либо токсический эффект. Показана достоверность результатов ориентировочной экспресс-оценки токсичности натуральных и заводских продуктов питания на простейших одноклеточных организмах, которые имеют сходные с клетками высших животных системы жизни и регуляторные функции. Другой подход к пище связан с нерациональной тотальной химизацией и широким применением премиксов при откормке животных. Представляет интерес проблема целенаправленного получения пищевых продуктов для укрепления здоровья и лечения с помощью биотехнологической микробиологии и промышленного производства. В кисломолочных продуктах содержится повышенное количество аминокислоты тирозина, из которой в организме образуется трансмиттер норадреналин, гормон симпатической нервной системы адреналин, играющие активирующую и регуляторную роль в организме и обеспечивающие трофику и адаптацию клеток к изменяющимся условиям жизни. В настоящее время получение пектинов (растительных полисахаридов) из овощей, фруктов, плодов и другого растительного сырья вызывает несомненный практический интерес. Пектин и содержащие его продукты выводят из организма тяжёлые металлы, радионуклиды, пестициды, гербициды и другие вредные вещества, содержащиеся в пище и выделяющиеся с жёлчью и пищеварительными железами в желудочно-кишечный канал. Он благотворно влияет на пищеварение и обмен веществ, пролонгирует действие лекарственных препаратов.

Общие патологические явления и процессы приводят к нарушению равновесия в основных регуляторных системах (ЦНС, эндокринной, иммунной, мембранорецепторной системах клеток) организма. При рассогласовании этих систем происходит ограничение работы и ритмичности исполнительных органов (кровообращения, дыхания, пищеварения). Нарушения синхронных связей регуляторных систем и органов вызывают расстройства согласованности, что обуславливает общее недомогание и недостаточность восстановительных процессов, нарушение нормальная работа различных структурных и функциональных систем организма. Из этого следует практический вывод о наиболее эффективном укреплении здоровья и лечении путём сочетания адекватного полноценного питания с лекарственными средствами, действующими одновременно на разные части функциональных систем. В последнее время в связи с избыточной химизацией и растущей урбанизацией возросла заболеваемость и увеличилась распространённость общей мембранной патологии, вызванной усилением процессов перекисного окисления липидов (ПОЛ) и активацией свободнорадикальных процессов. В связи с этим применение природных растительных антиоксидантов представляется весьма рациональным для повышения резистентности организма к сердечно-сосудистым заболеваниям, злокачественным новообразованиям, ионизирующим излучениям, отравлению тяжёлыми металлами, а также для сохранения иммунной системы и повышения обезвреживающей функции печени. Установлено, что дефицит селена приводит к развитию седечно-сосудистой патологии. Показана высокая профилактическая и лечебная активность селенита натрия. Экспериментальные и клинические наблюдения позволяют считать, что недостаток селена предрасполагает к развитию ишемической болезни сердца и инфаркта миокарда, а его введение в организм выполняет роль профилактического и лечебного фактора. Селенит натрия оказался наиболее активным ингибитором ПОЛ, чем витамин Е. При совместном применении они активнее, чем в отдельности, повышали эффективность сердечных гликозидов, что имеет существенное значение для стабилизации биомембран и повышения адекватного и интегрального ответа клеток на предъявляемые к ним требования. Это указывает на нормализацию гомеостаза под влиянием антиоксидантов пищевого происхождения. Природные соединения, поступающие в организм с пищей, свойственны человеку, так как они вместе и во взаимодействии совершали и совершают эволюцию основных процессов жизнеобеспечения клеток. Натуральная разнообразная пища и целенаправленные биотехнологические составы и сырьё, подвергнутые промышленной обработке, являются фундаментальными средствами для нормальной эволюции человека, укрепления здоровья, профилактики заболеваний, обеспечения условий функционирования регуляторных систем, гомеостаза организма.

Исторический ход развития экономики и общества, а также организационные трудности в системе здравоохранения и фармации требуют неотложной разработки государственной программы развития агропромышленного комплекса и обеспечения граждан России пищевами средствами и продуктами питания.


Пища представляет собой комплекс предшественников лекарств, из которых в организме образуются естественные лекарства: гормоны, трансмиттеры, ферменты, рецепторы, биомолекулы (ДНК, РНК) и все структурные элементы живого организма. В связи с этим становится актуальной разработка биологических интегральных методов оценки безвредности пищевых средств и готовой продукции в модельных опытах на живых клетках, в которых возникает первичный лечебный либо токсический эффект. Показана достоверность результатов ориентировочной экспресс-оценки токсичности натуральных и заводских продуктов питания на простейших одноклеточных организмах, которые имеют сходные с клетками высших животных системы жизни и регуляторные функции. Другой подход к пище связан с нерациональной тотальной химизацией и широким применением премиксов при откормке животных. Представляет интерес проблема целенаправленного получения пищевых продуктов для укрепления здоровья и лечения с помощью биотехнологической микробиологии и промышленного производства. В кисломолочных продуктах содержится повышенное количество аминокислоты тирозина, из которой в организме образуется трансмиттер норадреналин, гормон симпатической нервной системы адреналин, играющие активирующую и регуляторную роль в организме и обеспечивающие трофику и адаптацию клеток к изменяющимся условиям жизни. В настоящее время получение пектинов (растительных полисахаридов) из овощей, фруктов, плодов и другого растительного сырья вызывает несомненный практический интерес. Пектин и содержащие его продукты выводят из организма тяжёлые металлы, радионуклиды, пестициды, гербициды и другие вредные вещества, содержащиеся в пище и выделяющиеся с жёлчью и пищеварительными железами в желудочно-кишечный канал. Он благотворно влияет на пищеварение и обмен веществ, пролонгирует действие лекарственных препаратов.

Общие патологические явления и процессы приводят к нарушению равновесия в основных регуляторных системах (ЦНС, эндокринной, иммунной, мембранорецепторной системах клеток) организма. При рассогласовании этих систем происходит ограничение работы и ритмичности исполнительных органов (кровообращения, дыхания, пищеварения). Нарушения синхронных связей регуляторных систем и органов вызывают расстройства согласованности, что обуславливает общее недомогание и недостаточность восстановительных процессов, нарушение нормальная работа различных структурных и функциональных систем организма. Из этого следует практический вывод о наиболее эффективном укреплении здоровья и лечении путём сочетания адекватного полноценного питания с лекарственными средствами, действующими одновременно на разные части функциональных систем. В последнее время в связи с избыточной химизацией и растущей урбанизацией возросла заболеваемость и увеличилась распространённость общей мембранной патологии, вызванной усилением процессов перекисного окисления липидов (ПОЛ) и активацией свободнорадикальных процессов. В связи с этим применение природных растительных антиоксидантов представляется весьма рациональным для повышения резистентности организма к сердечно-сосудистым заболеваниям, злокачественным новообразованиям, ионизирующим излучениям, отравлению тяжёлыми металлами, а также для сохранения иммунной системы и повышения обезвреживающей функции печени. Установлено, что дефицит селена приводит к развитию седечно-сосудистой патологии. Показана высокая профилактическая и лечебная активность селенита натрия. Экспериментальные и клинические наблюдения позволяют считать, что недостаток селена предрасполагает к развитию ишемической болезни сердца и инфаркта миокарда, а его введение в организм выполняет роль профилактического и лечебного фактора. Селенит натрия оказался наиболее активным ингибитором ПОЛ, чем витамин Е. При совместном применении они активнее, чем в отдельности, повышали эффективность сердечных гликозидов, что имеет существенное значение для стабилизации биомембран и повышения адекватного и интегрального ответа клеток на предъявляемые к ним требования. Это указывает на нормализацию гомеостаза под влиянием антиоксидантов пищевого происхождения. Природные соединения, поступающие в организм с пищей, свойственны человеку, так как они вместе и во взаимодействии совершали и совершают эволюцию основных процессов жизнеобеспечения клеток. Натуральная разнообразная пища и целенаправленные биотехнологические составы и сырьё, подвергнутые промышленной обработке, являются фундаментальными средствами для нормальной эволюции человека, укрепления здоровья, профилактики заболеваний, обеспечения условий функционирования регуляторных систем, гомеостаза организма.

Исторический ход развития экономики и общества, а также организационные трудности в системе здравоохранения и фармации требуют неотложной разработки государственной программы развития агропромышленного комплекса и обеспечения граждан России пищевами средствами и продуктами питания.

Читайте также: