Каким образом белки осуществляют защитную функцию

Обновлено: 02.07.2024

Катализаторы — это вещества, изменяющие скорость химической реакции или вызывающие её, но не входящие в состав продуктов реакции.

Вопрос 2. Что такое иммунитет?

Иммунитет — это способ защиты организма от действия различных веществ и организмов, вызывающих деструкцию его клеток и тканей, характеризующийся изменением функциональной активности преимущественно иммуноцитов с целью поддержания гомеостаза внутренней среды.

Вопрос 3. Какие белки вам известны? Каковы их функции?

Кератин, коллаген, эластин — строительная, структурная функция;

Гемоглобин — транспортная ф.;

Актин и миозин — сократительная, двигательная ф.;

Гормоны (инсулин, соматотропин и др.) — регуляторная ф.;

Иммуноглобулины, тромбин, фибриноген и др. — защитная ф.;

Пепсин, каталаза, трипсин — каталитическая ф.

Вопрос 4. Какие функции белков вам известны?

Белки выполняют самые разнообразные функции в клетках: определяют их структуру и форму, изменяют скорость протекания химических реакций, обеспечивают передачу химических сигналов, осуществляют разные виды клеточного движения, а также перенос веществ через мембраны и т. п.

Вопрос 5. Чем объясняется многообразие функций белков?

Многообразие функций белков объясняется разнообразием форм и состава самих белков.

Вопрос 6. Что представляют собой белки — ферменты? Приведите примеры таких белков.

Ферменты представляют собой молекулы белковой природы, которые взаимодействуют с различными веществами, ускоряя их химическое превращение по определенному пути. При этом они не расходуются. В каждом ферменте есть активный центр, присоединяющийся к субстрату, и каталитический участок, запускающий ту или иную химическую реакцию.

Эти вещества ускоряют протекающие в организме биохимические реакции без повышения температуры. Обычно эти молекулы имеют третичную (глобула) или четвертичную (несколько соединенных глобул) белковую структуру. Сначала они синтезируются в линейном виде. А потом сворачиваются в требуемую структуру. Для обеспечения активности биокатализатору необходимо определенное строение. Ферменты, как и другие белки, разрушаются при нагреве, экстремальных значениях pH, агрессивных химических соединений.

Основные свойства ферментов:

специфичность: способность фермента действовать только на специфический субстрат, например, липазы — на жиры;

каталитическая эффективность: способность ферментативных белков ускорять биологические реакции в сотни и тысячи раз;

способность к регуляции: в каждой клетке выработка и активность ферментов определяется своеобразной цепью превращений, влияющей на способность этих белков вновь синтезироваться.

Примеры белков — ферментов: пепсин, каталаза, трипсин, амилаза, протеазы, липазы, глутаматдегидрогеназа, аланинаминотрансфераза (АЛТ), лейцинаминопептидаза (ЛАП), фруктозо — 1,6 — дисфосфат — альдолаза (ФДФ — А) и др.

Вопрос 7. Как реализуется белками защитная функция?

Защитная функция белков в организме заключается в предотвращении проникновения чужеродных веществ, которые могут нанести существенный вред организму. Если же это произошло, специализированные белки способны их обезвредить. Эти защитники называются антителами или иммуноглобулинами. Связывание их с белками возбудителей подавляет функциональную активность последних и останавливает развитие инфекции. Антитела обладают уникальным свойством: они способны отличать чужеродные белки от собственных белков организма.

Кроме того, в ответ на заражение вирусом клетка вырабатывает специальные белки — интерфероны, которые препятствуют размножению носителя инфекции.

Многие организмы используют для защиты или нападения специфические пептиды и белки, называемые токсинами, которые в большинстве случаев являются сильными ядами. Часто эти вещества обладают ферментативной активностью (холерный токсин, коклюшный токсин) или же они могут нарушать структуру клеточных мембран (белки ядов змей и насекомых).

Вопрос 8. Что вам известно о гормонах? Есть ли среди них вещества белковой природы? Приведите примеры.

Гормоны — мельчайшие элементы, вырабатываемые нашим организмом. Это органические биологически активные вещества, которые вырабатываются собственными железами внутренней секреции организма. Поступая в кровь, связываясь с рецепторами определенных клеток, они регулируют физиологические процессы, обмен веществ.

Белкам — гормонам присуща регуляторная функция. Они поддерживают постоянные концентрации веществ в крови и клетках, участвуют в росте, размножении и других жизненно важных процессах. Например, инсулин регулирует содержание сахара в крови.

Примеры гормонов белковой природы (белки и полипептиды) — гормоны гипоталамуса, гормоны гипофиза (соматотропин, кортикотропин, пролактин, вазопрессин и окситоцин, гонадотропный гормон, полипептидные низкомолекулярные гормоны, адренокортикотропный гормон, кортикотропин (АКТГ)); щитовидной железы (тироксин, кальцитонин); гормон паращитовидных желез; гормоны поджелудочной железы (глюкагон и инсулин); гормон почек (эритропоэтин) и др.

Виды белков их функции в организме.

Структурные белки. Влияют на структуру самой клетки, ее форму. Всеми своими свойствами, качествами и даже функциями каждый вид тканей обязан именно структурным белкам. Кроме того, полипептиды, выполняющие эту роль, образуют волосы, ногти, раковины моллюсков, перья птиц. Они же являются определенной арматурой в теле клетки. Хрящи состоят также из этих видов белков. Примеры: тубулин, кератин, актин и другие.

Транспортные белки. Транспортные белки обеспечивают транспортировку питательных и других полезных веществ по всему организму. Например, клеточные мембраны пропускают внутрь клетки не все подряд. И даже некоторые полезные вещества туда не могут проникнуть. Транспортные белки имеют способность проникать сквозь мембраны клеток и проносить с собой эти самые вещества. Гемоглобин — переносчик кислорода и других веществ.

Рецепторные белки. Рецепторные белки наряду с транспортными белками обеспечивают проникновение полезных веществ внутрь клеток. Располагаются рецепторные белки на поверхности мембран, то есть снаружи клеток. Они связываются с поступающими к ним питательными веществами и помогают им проникать внутрь. Важность этого вида белка переоценить невозможно, так как без них внутриутробное развитие может происходить совершенно неправильно или даже полностью прекратиться.

Сократительные белки. Человек двигается благодаря сокращению мышечных тканей. Эту способность им обеспечивают сократительные белки. Как отдельные клетки, так и организм в целом приходит в движение при помощи этого вида белков. Например, миозин, актин и др.

Регуляторные белки. Организм человека ведет свою жизнедеятельность благодаря множеству различных биохимических процессов внутри него. Все эти процессы обеспечивают и регулируют регуляторные белки. Одним из них является инсулин, также половые гормоны.

Защитные белки. Находясь в окружающей среде, организм постоянно контактирует с самыми разными веществами, микроорганизмами и так далее, попадает в самые разные условия. Сохранность здоровья в таких случаях обеспечивают иммунные клетки, которые и являются защитными белками. Также к последним относят прокоагулянты, которые обеспечивают нормальную свертываемость крови. Гаммаглобулин, иммуноглобулин — антитела (защита от инфекций).

Ферменты. Еще один вид белков — ферменты. Они отвечают за правильное протекание биохимических реакций внутри клеток во всем организме. За контроль метаболизма отвечают белки — протеазы.

Вопрос 10. Почему белки называют молекулами жизни?

Более 4 млрд. лет назад на Земле из маленьких неорганических молекул непостижимым образом возникли белки, ставшие строительными блоками живых организмов. Своим бесконечным разнообразием всё живое обязано именно уникальным молекулам белка.

Белки — это природные органические соединения, которые обеспечивают все жизненные процессы любого организма. Из белков построены хрусталик глаза и паутина, панцирь черепахи и ядовитые вещества грибов. С помощью белков мы перевариваем пищу и боремся с болезнями. Благодаря особым белкам по ночам светятся светлячки, а в глубинах океана мерцают таинственным светом медузы.

Белковых молекул в живой клетке во много раз больше, чем всех других (кроме воды, разумеется!). Белки считаются основным материалом для "строительства" клеток. Учёные выяснили, что у большинства организмов белки составляют более половины их сухой массы. И разнообразие видов белков очень велико — в одной клетке такого маленького организма, как бактерия Escherichia соli насчитывается около 3 тыс. различных белков.

Вопрос 11. Используя дополнительные источники информации, найдите сведения о функциях белков ферментов различных классов. Результат оформите в виде таблицы.

Используя дополнительные источники информации, найдите сведения о функциях белков ферментов различных классов. Результат оформите в виде таблицы

Используя дополнительные источники информации, найдите сведения о функциях белков ферментов различных классов. Результат оформите в виде таблицы

Вопрос 12. Найдите в приведённом тексте ошибки. Укажите номера предложений, в которых сделаны ошибки. Исправьте их.

1) Большое значение в строении и жизнедеятельности организмов имеют белки. 2) Это биополимеры, мономерами которых являются азотистые основания. 3) Белки входят в состав плазматической мембраны. 4) Все белки выполняют в клетке ферментативную функцию. 5) Молекулы белка несут наследственную информацию о признаках организма.6) Молекулы белка входят в состав рибосом.

Ответ. Ошибки сделаны в предложениях под номерами: 2, 4, 5.

2)Это биополимеры, мономерами которых являются аминокислоты, соединенные между собой пептидной связью.

4)Не все белки выполняют в клетке ферментативную функцию. ИЛИ…. Все белки выполняют в клетке различные функции.

5) Молекулы белка не несут наследственную информацию о признаках организма. ИЛИ…Наследственная информация о признаках организма зашифрована в нуклеиновых кислотах.

Вопрос 13. Почему в запасных тканях семян растений (эндосперме, семядолях), даже очень богатых углеводами или жирами, обязательно присутствуют белки?

Семена у растений наиболее надежно обеспечивают их размножение и распространение. В семени содержится необходимый для прорастания зародыша запас питательных веществ. Белки при необходимости используются ими для получения аминокислот и энергии. Белки являются основным строительным материалом клеток. Также белки в сухом состоянии денатурируются значительно медленнее, чем белки оводненные, инактивирование ферментов в сухом состоянии происходит гораздо медленнее, чем в присутствии влаги. Поэтому сухие семена могут выдержать нагревание до гораздо более высоких температур, чем те же споры или семена в увлажненном состоянии.

Цель: показать наличие белков в биологических объектах.

Оборудование: штатив с пробирками, водяная баня, кристаллизатор со льдом, мерный стакан на 50 мл.

Реактивы: куриное яйцо, концентрированная азотная кислота, раствор аммиака, гидроксид натрия, раствор медного купороса, вода.

Ход работы:

1. Приготовьте раствор белка.

2. Ксантопротеиновая реакция. В пробирку налейте 2—3 мл раствора белка и добавьте несколько капель азотной кислоты. Соблюдайте технику безопасности при работе с химическими реагентами! Нагрейте содержимое пробирки, при этом образуется жёлтый осадок. Охладите смесь и добавьте раствор аммиака до перехода жёлтой окраски в оранжевую.

3. Биуретовая реакция. В пробирку налейте 2—3 мл раствора белка и 2—3 мл раствора гидроксида натрия, затем 1—2 мл раствора медного купороса. Появляется фиолетовое окрашивание.

4. Запишите результаты эксперимента и сделайте вывод.

Ксантопротеиновая реакция открывает наличие в белках циклических аминокислот — триптофана, фенилаланина, тирозина, содержащих в своем составе ароматическое ядро. Ряд белков при добавлении к ним концентрированной азотной кислоты при нагревании дают желтое окрашивание, которое может переходить в оранжевое в щелочной среде.

Реакция вызвана нитрованием бензольного ядра указанных циклических аминокислот и образованием нитросоединений желтого цвета.

Реакция вызвана нитрованием бензольного ядра указанных циклических аминокислот и образованием нитросоединений желтого цвета

Взаимодействие с концентрированной азотной кислотой — белый осадок, нагревание — появлением желтой окраски, добавление аммиака — появление оранжевой окраски.

Формулы реакции

Ксантопротеиновую реакцию дают почти все белки. Ксантопротеиновая реакция обуславливает появление желтого окрашивания при попадании концентрированной азотной кислоты на кожу, ногти. Эту реакцию могут давать и более простые ароматические соединения (например, фенолы). Исключение составляют клупеин и сальмин (из группы протаминов) и желатина, в молекуле которых почти полностью отсутствуют ароматические аминокислоты.

Биуретовая реакция является универсальной на пептидную связь в белках. Вещества, имеющие в своем составе не менее 2 — х пептидных связей дают эту реакцию.

Реакция состоит в том, что в щелочной среде в присутствии сернокислой меди белки и полипептиды дают сине — фиолетовое или красно — фиолетовое окрашивание в зависимости от длины пептида вследствие образования комплексных соединений меди с пептидной группой. Продукты гидролиза белков (пептоны) могут давать розовое, красное окрашивание.

Продукты гидролиза белков (пептоны) могут давать розовое, красное окрашивание

Щелочная среда приводит к появлению отрицательного заряда вследствие диссоциации ОН — группы, благодаря этому кислород взаимодействует с медью с образованием солеобразной связи, а медь в свою очередь с атомами азота связана через дополнительно координационные связи за счет использования их неподеленных электронных пар. Это ведет к образованию стабильного комплекса.

Образование стабильного комплекса

Вывод: Ксантопротеиновая и биуретовая реакции — качественные реакции на белки. С помощью этих реакций можно доказать наличие белков в биологических объектах.

Белки являются основой всех живых организмов. Именно эти вещества выступают компонентом клеточных мембран, органелл, хрящей, сухожилий и роговых производных кожи. Однако защитная функция белков - одна из самых важных.

Белки: особенности строения

Наряду с липидами, углеводами и нуклеиновыми кислотами белки являются органическими веществами, составляющими основу живых существ. Все они - природные биополимеры. Эти вещества состоят из многократно повторяющихся структурных единиц. Они называются мономеры. Для белков такими структурными единицами являются аминокислоты. Соединяясь в цепочки, они образуют крупную макромолекулу.

защитная функция белков

Уровни пространственной организации белка

Цепочка, состоящая из двадцати аминокислот, может образовывать различные структуры. Это уровни пространственной организации или конформации белка. Первичная структура представлена цепью из аминокислот. Когда она закручивается в спираль, возникает вторичная. Третичная структура возникает при закручивании предыдущей конформации в клубок или глобулу. А вот следующая структура самая сложная - четвертичная. Она состоит из нескольких глобул.

функции белков таблица

Свойства белков

Если четвертичная структура разрушается до первичной, а именно до цепи аминокислот, то происходит процесс, который называется денатурацией. Он обратим. Цепочка аминокислот способна снова образовать более сложные структуры. А вот когда происходит деструкция, т.е. разрушение первичной структуры, белок восстановить уже невозможно. Такой процесс является необратимым. Деструкцию осуществлял каждый из нас, когда термически обрабатывал продукты, состоящие из белка - куриные яйца, рыбу, мясо.

белки выполняют защитную функцию

Функции белков: таблица

Белковые молекулы очень многобразны. Это обусловливает широкий спектр их возможностей, которые обусловлены строением аминокислот. Функции белков (таблица содержит необходимую информацию) являются необходимым условием существования живых организмов.

Защитная функция белков в организме

Как видите, функции белков очень разнообразны и важны по своему значению. Но мы не упомянули еще об одной из них. Защитная функция белков в организме заключается в предотвращении проникновения чужеродных веществ, которые могут нанести существенный вред организму. Если же это произошло, специализированные белки способны их обезвредить. Эти защитники называются антителами или иммуноглобулинами.

защитная функция белков примеры

Процесс формирования иммунитета

С каждым вздохом в наш организм проникают болезнетворные бактерии и вирусы. Они попадают в кровь, где начинают активно размножаться. Однако на их пути встает значительная преграда. Это белки плазмы крови - иммуноглобулины или антитела. Они являются специализированными и характеризуются способностью распознавать и обезвреживать чужеродные для организма вещества и структуры. Они называются антигенами. Так проявляется защитная функция белков. Примеры ее можно продолжить информацией об интерфероне. Этот белок также является специализированным и распознает вирусы. Это вещество даже является основой многих иммуностимулирующих лекарственных препаратов.

Благодаря наличию защитных белков организм способен противостоять болезнетворным частицам, т.е. у него формируется иммунитет. Он может быть врожденным и приобретенным. Первым все организмы наделены еще с момента появления на свет, благодаря чему и возможна жизнь. А приобретенный появляется после перенесения различных инфекционных заболеваний.

Механическая защита

Белки выполняют защитную функцию, непосредственно предохраняя клетки и весь организм от механических воздействий. К примеру, наружный скелет ракообразных играет роль панциря, надежно защищая все содержимое. Кости, мышцы и хрящи образуют основу организма, и не только предотвращают повреждение мягких тканей и органов, но и обеспечивают его передвижение в пространстве.

защитная функция белков заключается в

Образование тромбов

Процесс свертывания крови - это также защитная функция белков. Он возможен благодаря наличию специализированных клеток - тромбоцитов. При повреждении кровеносных сосудов они разрушаются. В результате растворимый белок плазмы фибриноген превращается в его нерастворимую форму - фибрин. Это сложный ферментативный процесс, в результате которого нити фибрина очень часто переплетаются и образуют густую сеть, которая препятствует вытеканию крови. Другими словами, образуется сгусток крови или тромб. Это является защитной реакцией организма. При нормальной жизнедеятельности этот процесс длится максимум до десяти минут. Но при болезни несвертываемости крови - гемофилии, которой страдают в основном мужчины, человек может погибнуть даже при незначительном ранении.

Однако если тромбы образуются внутри кровеносного сосуда, это может быть очень опасно. В некоторых случаях это даже приводит к нарушению его целостности и внутреннему кровоизлиянию. В этом случае рекомендованы препараты, наоборот, разжижающие кровь.

защитная функция белков в организме

Химическая защита

Защитная функция белков проявляется и в химической борьбе с болезнетворными веществами. И начинается она уже в ротовой полости. Попадая в нее, пища вызывает рефлекторное выделение слюны. Основу этого вещества составляет вода, ферменты, которые расщепляют полисахариды и лизоцим. Именно последнее вещество обезвреживает вредоносные молекулы, защищая организм от их дальнейшего воздействия. Содержится он и в слизистых оболочках желудочно-кишечного тракта, и в слезной жидкости, которая омывает роговицу глаза. В большом количестве лизоцим находится в грудном молоке, слизи носоглотки и белке куриных яиц.

Итак, защитная функция белков проявляется в первую очередь в обезвреживании бактериальных и вирусных частиц в крови организма. В результате у него формируется способность противостоять болезнетворным агентам. Ее и называют иммунитетом. Белки, которые входят в состав наружного и внутреннего скелета, защищают внутреннее содержимое от механических повреждений. А белковые вещества, находящиеся в слюне и других средах, предотвращают действие на организм химических агентов. Другими словами, защитная функция белков заключается в обеспечении необходимых условий для всех процессов жизнедеятельности.

  • Белки — природные линейные гетерополимеры, состоящие из мономеров — аминокислот. Главная особенность белков как молекулярных машин — способность специфически связывать другие белки, иные биополимеры и малые молекулы и взаимодействовать с ними. Благодаря этой способности белки выполняют большинство функций клеток и организмов. Одна из важных функций белков — защитная. Обычно к защитным белкам относят прежде всего белки, участвующие в иммунной защите организма. Однако многие другие

Белки способствуют ороговеванию верхних слоев кожи. Таким белком в клетках эпидермиса наземных позвоночных является кератин. Слой мертвых клеток, заполненных кератином, обеспечивает механическую защиту, защищает организм от потерь воды и проникновения болезнетворных бактерий и других паразитов.

Сходную функцию физической защиты выполняют структурные белки, из которых состоят клеточные стенки некоторых протистов (например, зеленой водоросли хламидомонады) и капсидов вирусов.

Связанные понятия

Ка́псула бакте́рий — поверхностная структура бактериальных клеток, залегающая поверх клеточной стенки или внешней мембраны и состоящая из экзополисахаридов. Капсулы имеются у некоторых архей, например, у представителей родов Methanosarcina и Staphylothermus. Структурной основой капсулы служат линейные или разветвлённые полигликаны и полипептиды, состоящие из одинаковых или разных мономеров. Фибриллы капсульных полимеров довольно гибки, ориентируются под прямым углом к поверхности клетки и сильно.

Холерный токсин — мультисубъединичный белковый токсин, вырабатываемый холерным вибрионом. Вибрион (вирулентный штамм Vibrio cholerae секретирует ХТ после попадания бактерии в организм человека. Действие ХТ является причиной интенсивного обезвоживания после начала активной фазы холерной инфекции. При проникновении в клетки заражённого организма одна из субъединиц этого токсина катализирует АДФ-рибозилирование Gsα-компонента аденилатциклазы, что ведёт к её гиперактивации. Повышенная активность адениталциклазы.

Упоминания в литературе

Белки, входя в состав всех клеточных структур, выполняют пластическую (строительную) функцию. Движения клеток также осуществляют белки. Они обеспечивают транспорт веществ в клетку, из клетки и внутри клетки. Важной является защитная функция белков (антитела). Белки являются одним из источников энергии. Ферменты являются белками.

Связанные понятия (продолжение)

Фагосома, или пищеварительная вакуоль, — вакуоль, образующаяся в процессе фагоцитоза, внутри которой находятся субстраты, подлежащие перевариванию.

Эстеразы — ферменты, катализирующие в клетках гидролитическое расщепление сложных эфиров (англ. esters) на спирты и кислоты при участии молекул воды (гидролиз).

Лектины (от лат. legere — собирать) — белки и гликопротеины, обладающие способностью высокоспецифично связывать остатки углеводов на поверхности клеток, в частности, вызывая их агглютинацию. Лектины нередко участвуют в клеточном распознавании, например, некоторые патогенные микроорганизмы используют лектины для прикрепления к клеткам поражённого организма. Первоначально лектины были выделены из семян растений, однако они найдены у большинства живых организмов. Лектины могут вызывать агглютинацию.

Гликопротеи́ны (устар. гликопротеиды) — это двухкомпонентные белки, в которых белковая (пептидная) часть молекулы ковалентно соединена с одной или несколькими группами гетероолигосахаридов. Кроме гликопротеинов существуют также протеогликаны и гликозаминогликаны.

Ферропто́з (англ. ferroptosis) — тип программируемой окислительной некротической гибели клетки, характерной особенностью которого является железо-зависимое перекисное окисление липидов. Ферроптоз известен у раковых клеток и фибробластов млекопитающих.

Ферме́нты (от лат. fermentum) — обычно достаточно сложные молекулы белка, рибосом или их комплексы, ускоряющие химические реакции в живых системах. Каждый фермент, свернутый в определённую структуру, ускоряет соответствующую химическую реакцию: реагенты в такой реакции называются субстратами, а получающиеся вещества — продуктами. Ферменты специфичны к субстратам: АТФ-аза катализирует расщепление только АТФ, а киназа фосфорилазы фосфорилирует только фосфорилазу.Ферментативная активность может регулироваться.

Гидролазы (КФ3) — это класс ферментов, катализирующий гидролиз ковалентной связи. Общий вид реакции, катализируемой гидролазой, выглядит следующим образом.

Пероксисо́ма — клеточная органелла, окружённая единственной мембраной и не содержащая ДНК или рибосом (в отличие от митохондрий и хлоропластов). Пероксисомы присутствуют во всех эукариотических клетках. Они содержат ферменты, которые при помощи молекулярного кислорода окисляют некоторые органические вещества. В пероксисомах также происходит β-окисление жирных кислот. В них также протекают первые этапы образования плазмалогенов. У растений пероксисомы клеток листьев участвуют в процессе фотодыхания.

Альфа-амилаза (α-Амилаза, 1,4-α-d-глюкан-глюканогидролаза, гликогеназа; шифр КФ — 3.2.1.1) является кальций-зависимым ферментом. К этому типу относятся амилаза слюнных желез и амилаза поджелудочной железы. Она способна гидролизовать полисахаридную цепь крахмала и других длинноцепочечных углеводов в любом месте. Таким образом, процесс гидролиза ускоряется и приводит к образованию олигосахаридов различной длины. У животных α-амилаза является основным пищеварительным ферментом. Активность α-амилазы.

Инфламмасома (англ. inflammasome от англ. inflammation, воспаление) — особый белковый комплекс в макрофагах и нейтрофилах, который приводит к запуску воспалительной реакции при контакте клетки с микроорганизмами, играет важную роль в системе врождённого иммунитета. Криопириновый тип инфламмасом ответственен за воспаление, возникающее при контакте клеток с кристаллами мочевой кислоты, что характерно для подагры.

Протеа́зы, протеиназы, протеолитические ферменты — ферменты из класса гидролаз, которые расщепляют пептидную связь между аминокислотами в белках. Кроме них, пептидную связь расщепляют также протеасомы.

Оксидазы — окислительные ферменты класса оксидоредуктаз. В настоящее время найдено очень много разнообразных окислительных ферментов, как растительного, так и животного происхождения. В живых клетках оксидазы служат катализаторами окислительно-восстановительных реакций и классифицируются на металлоферменты и флавопротеиды.

Ауксотрофы — организмы, которые не способны синтезировать определенное органическое соединение, необходимое для роста этого организма. Ауксотрофия — характеристика подобных организмов, этот термин противоположен прототрофии.

α-Аманитин — циклический пептид, состоящий из восьми остатков аминокислот. Наиболее ядовитый из аматоксинов — токсинов, содержащихся во многих видах грибов, относящихся к роду Amanita, например в бледной поганке. Также обнаруживается в грибах видов Galerina marginata и Conocybe filaris. ЛД50 α-аманитина при пищевом отравлении составляет приблизительно 0,1 мг/кг.

Клеточный иммунитет (англ. Cell-mediated immunity) — такой тип иммунного ответа, в котором не участвуют ни антитела, ни система комплемента. В процессе клеточного иммунитета активируются макрофаги, натуральные киллеры, антиген-специфичные цитотоксические Т-лимфоциты, и в ответ на антиген выделяются цитокины.Иммунная система исторически описывается состоящей из двух частей — системы гуморального иммунитета и системы клеточного иммунитета. В случае гуморального иммунитета защитные функции выполняют.

Приобретённый иммунитет — способность организма обезвреживать чужеродные и потенциально опасные микроорганизмы (или молекулы токсинов), которые уже попадали в организм ранее. Представляет собой результат работы системы высокоспециализированных клеток (лимфоцитов), расположенных по всему организму. Считается, что система приобретённого иммунитета возникла у челюстноротых позвоночных. Она тесно взаимосвязана с гораздо более древней системой врождённого иммунитета, которая является основным средством.

Антимикробные пептиды – молекулы, состоящие из 12–50 аминокислотных остатков, обладающие антимикробной (антибактериальной) активностью.

Матриксные металлопротеиназы (MMP) — семейство внеклеточных цинк-зависимых эндопептидаз, способных разрушать все типы белков внеклеточного матрикса. Играют роль в ремоделировании тканей, ангиогенезе, пролиферации, миграции и дифференциации клеток, апоптозе, сдерживании роста опухолей. Задействованы в расщеплении мембранных рецепторов, выбросе апоптозных лигандов, таких как FAS, а также в активации и деактивации хемокинов и цитокинов.Впервые MMP были описаны у позвоночных в 1962 году, позднее обнаружены.

Глиоксила́тный цикл, или глиоксила́тный шунт — анаболический путь, имеющийся у растений, бактерий, протистов и грибов, представляет собой видоизменённый цикл трикарбоновых кислот. Глиоксилатный цикл служит для превращения ацетил-СоА в сукцинат, который далее используется для синтеза углеводов. У микроорганизмов он обеспечивает утилизацию простых углеродных соединений в качестве источника углерода, когда более сложные источники, например, глюкоза, недоступны, а также может считаться одной из анаплеротических.

Гетероцисты — дифференцированные клетки нитчатых цианобактерий, осуществляющие азотфиксацию. При недостатке соединений азота в среде они появляются регулярно вдоль трихомы из вегетативных клеток и акинет. Цианобактерии — фототрофы, осуществляющие оксигенный фотосинтез, однако кислород, атмосферный и выделяемый при фотосинтезе, ингибирует фермент нитрогеназу, необходимую для азотфиксации, поэтому у нитчатых цианобактерий в процессе эволюции возникли специализированные клетки для азотфиксации.

Корецептор — находящийся на поверхности клетки дополнительный рецептор, который связывается с сигнальной молекулой в дополнение к первичному рецептору. Корецепторы Т-лимфоцитов усиливают взаимодействие рецепторного комплекса Т-лимфоцитов с комплексом пептид + молекула главного комплекса гистосовместимости. Корецепторы В-лимфоцитов усиливают взаимодействие рецепторного комплекса В-лимфоцитов с антигенами. В-лимфоциты используют корецепторы как для более точного распознавания антигена, так и для взаимодействия.

Цитохромы (гемопротеины) — это крупные мембранные белки (за исключением наиболее распространённого цитохрома c, который является маленьким глобулярным белком), которые содержат ковалентно связанный гем, расположенный во внутреннем кармане, образованном аминокислотными остатками.

Тра́нспортные белки́ — собирательное название большой группы белков, выполняющих функцию переноса различных лигандов как через клеточную мембрану или внутри клетки (у одноклеточных организмов), так и между различными клетками многоклеточного организма. Транспортные белки могут быть как интегрированными в мембрану, так и водорастворимыми белками, секретируемыми из клетки, находящимися в пери- или цитоплазматическом пространстве, в ядре или органеллах эукариот.

Фосфатидилхоли́ны ― группа фосфолипидов, содержащих холин. Также входят в группу лецитинов. Фосфатидилхолины одни из самых распространенных молекул клеточных мембран.

Клатрин (англ. clathrin) — внутриклеточный белок, основной компонент оболочки окаймлённых пузырьков, образующихся при рецепторном эндоцитозе.

Липополисахарид (ЛПС; англ. lipopolysaccharide) — макромолекула, состоящая из полисахарида, ковалентно соединённого с липидом, основной компонент клеточной стенки грамотрицательных бактерий.

Флагеллин — бактериальный белок, который способен самоорганизовываться в полые цилиндрические структуры, образующие филаменты бактериальных жгутиков. Это главный компонент жгутиков и представлен в больших количествах у всех жгутиковых бактерий. Флагеллин является лигандом для рецептора врождённой иммунной системы TLR5.

Ви́русная оболо́чка, или суперкапси́д, — дополнительная оболочка, покрывающая капсид многих вирусов (в том числе вируса гриппа и многих вирусов животных).

Тиоредоксины — семейство маленьких белков, представленный во всех организмах от архей до человека. Они участвуют во многих важных биологических процессах, включая определение окислительно-восстановительного потенциала клетки и передачу сигнала. У человека тиоредоксин кодируется геном TXN. Мутации, приводящие к потере функциональности даже одного аллеля этого гена, приводят к смерти на стадии четырёхклеточного эмбриона. Тиоредоксин играет значительную роль в организме человека, хотя и не до конца.

Протами́ны — низкомолекулярные основные белки в ядрах сперматозоидов большинства групп животных. Составляют фракцию основного белка в зрелой сперме рыб.

Трипсин — фермент класса гидролаз, расщепляющий пептиды и белки; обладает также эстеразной (гидролиз сложных эфиров) активностью.

Эндоцито́з — процесс захвата внешнего материала клеткой, осуществляемый путём образования мембранных везикул. В результате эндоцитоза клетка получает для своей жизнедеятельности гидрофильный материал, который иначе не проникает через липидный бислой клеточной мембраны. Различают фагоцитоз, пиноцитоз и рецептор-опосредованный эндоцитоз. Термин был предложен в 1963 году бельгийским цитологом Кристианом де Дювом для описания множества процессов интернализации, развившихся в клетке млекопитающих.

Факультативные анаэробы — организмы, энергетические циклы которых проходят по анаэробному пути, но способные существовать при доступе кислорода, в отличие от облигатных анаэробов, для которых кислород губителен.

Функции белков следующие: структурная, защитная, ферментативная, регуляторная, двигательная, транспортная. Примеры белков, выполняющих функции из этого списка приведены ниже.

К структурным белкам можно отнести:

Коллаген – белок фибриллярной структуры, который образует соединительную ткань животных, а значит из него состоит костный скелет, все хрящи, сухожилия. Коллаген обеспечивает прочность и эластичность. Коллаген есть только у многоклеточных животных и его нет у вирусов, бактерий, простейших и растений.

Кератин – этот белок образует кожу, входит в состав волос, ногтей, перьев птиц. По структуре кератин - фибриллярный белок, его вторичная структура на 80% представлена α-спиралями и β-тяжами. Благодаря этой структуре и высокому содержанию цистеина, который образует дисульфидные мостики, кератин имеет высокую упругость. Например, волосы или шерсть восстанавливают свою форму после высыхания.

Фиброин - белок, образуемый прядильными железами насекомых (пауков, личинок тутового и дубового шелкопряда). Фиброин представляет собой нерастворимый фибриллярный белок, который состоит из слоев антипараллельных бета - листов. Первичная структура его состоит из последовательности аминокислот Gly - Ser -Gly- Ала -Gly-Ала. Как видим, глицина в молекуле гораздо больше, кроме того молекула имеет регулярное строение, это обеспечивает плотную упаковку молекул в листы и способствует жесткой структуре шелка и прочности. Сочетание жесткости и прочности делает его материалом, находящим применение в нескольких областях, включая биомедицину и текстильное производство. Надо отметить, что паутина — уникальный биоматериал, который появился в ходе эволюции более 200 миллионов лет назад. При помещении в организм человека паутина не вызывает иммунного ответа и способна подавлять рост бактерий, и это свойство крайне интересует врачей и биоинженеров.

Ферментативную функцию выполняют такие белки как :

Пепсин желудочного сока – фермент класса гидролаз образуется из своего предшественника пепсиногена . Процесс выработки происходит в главных клетках слизистой оболочки желудка. Основная функция пепсина – он расщепляет белки пищи до пептидов. Пепсин был открыт еще в 19 веке Теодором Шванном, а 1930 голу его смог получить в лабораторных условиях Джон Нортроп . Пепсин действует только в кислой среде желудка, и при попадании в щелочную среду двенадцатиперстной кишки становится неактивным.

Защитную функцию выполняют белки:

Антитела (глобулин крови млекопитающих) – образуют комплексы с чужеродными белками. Это крупные глобулярные белки плазмы крови, выделяющиеся плазматическими клетками иммунной системы. Они необходимы для нейтрализации клеток бактерий, грибов, многоклеточных паразитов, попадающих в организм, а также вирусов и других чужеродных веществ. Глобулины имеют третичную структуру. Клетки иммунной системы начинают вырабатывать антитела в ответ на чужеродные белки – антигены. Антитела накапливаются в сыворотке крови и являются уникальными на каждый антиген.

Фибриноген по международной номенклатуре – это фактор I (первый) свертывающей системы плазмы крови. Белок находится в плазме крови, превращающийся под воздействием тромбина в фибрин в процессе свертывания крови.

Тромбин крови (фактор свёртывания II) — функцию свертывания крови в организме осуществляет сложная система, одним из компонентов которой является тромбин. Главная его функция - превращение фибриногена в фибрин. Он действует также на несколько других факторов свертывания.

Яичный альбумин - это пример простого белка глобулярной структуры – основа для питания эмбриона, служит защитой для желтка, обладает бактерицидными свойствами. Этот белок выполняет запасающую (питательную) и защитную функцию.

Регуляторную функцию выполняют гормоны, например инсулин.

Инсулин – это гормон белковой природы, молекула инсулина образована двумя полипептидными цепями, образуя первичную структуру. Инсулин образуется в клетках островков Лангерганса поджелудочной железы. Основная функция инсулина – регуляция углеводного обмена.

Дыхательный пигмент, транспорт:

Гемоглобин – содержится в эритроцитах, обеспечивает красный цвет крови. Молекула имеет четвертичную структуру . Основной функциональной единицей является гем структура из пиррольных колец и атома железа. Гем связан с каждой из четырех субъединиц белковой молекулы. Именно за счет атома железа осуществляется главная функция гемоглобина – быстрое присоединение и последующее отщепление кислорода, т.е транспорт кислорода в ткани и органы. Перенос выдыхаемого СО2 также осуществляется гемоглобином, но за счет связывания углекислоты NH2 группой белка.

Миоглобин – так же как и гемоглобин, является дыхательным пигментом. Находится он в мышечной ткани. Молекула представляет собой одну полипептидную цепь, образующую третичную структуру. По структуре молекула миоглобина сходна с молекулой гемоглобина и это не случайно: особенность строения молекулы зависит от функции этих белков, а она у них одинакова – транспорт кислорода. Миоглобин транспортирует кислород в мышечной ткани. Особенность – быстро связываете кислород, но труднее, чем гемоглобин отдает его.

Сократительные белки (двигательная функция):

Миозин - состоит из двух переплетённых a-спиралей (фибриллярная часть), которые соединены с двумя глобулами. Фибриллярная часть выполняет сократительную функцию. Глобулярная– ферментативную функцию, и тем самым обеспечивает молекулу энергией, которая необходима для выполнения сократительных движений. Таким образом, белок образует подвижные нити миофибрилл саркомера.

Актин – белок образует микрофиламенты — один из основных компонентов цитоскелета эукариотических клеток. Вместе с белком миозином образует основные сократительные элементы мышц — актомиозиновые комплексы саркомеров. Актин образует неподвижные нити миофибрилл саркомера.

Есть еще немало примеров - пишите, что еще можно дополнить в мой список. Ну и не забывайте повторять материал, он есть в других шпаргалках - здесь , здесь и здесь .

Можете написать в комментариях какую тему собрать в компактную шпаргалку, я обязательно учту ваше мнение!

Если статья была полезной - не жалейте лайк. Подписывайтесь на канал - я вам рада помочь!

Катализаторы — это вещества, изменяющие скорость химической реакции или вызывающие её, но не входящие в состав продуктов реакции.

Вопрос 2. Что такое иммунитет?

Иммунитет — это способ защиты организма от действия различных веществ и организмов, вызывающих деструкцию его клеток и тканей, характеризующийся изменением функциональной активности преимущественно иммуноцитов с целью поддержания гомеостаза внутренней среды.

Вопрос 3. Какие белки вам известны? Каковы их функции?

Кератин, коллаген, эластин — строительная, структурная функция;

Гемоглобин — транспортная ф.;

Актин и миозин — сократительная, двигательная ф.;

Гормоны (инсулин, соматотропин и др.) — регуляторная ф.;

Иммуноглобулины, тромбин, фибриноген и др. — защитная ф.;

Пепсин, каталаза, трипсин — каталитическая ф.

Вопрос 4. Какие функции белков вам известны?

Белки выполняют самые разнообразные функции в клетках: определяют их структуру и форму, изменяют скорость протекания химических реакций, обеспечивают передачу химических сигналов, осуществляют разные виды клеточного движения, а также перенос веществ через мембраны и т. п.

Вопрос 5. Чем объясняется многообразие функций белков?

Многообразие функций белков объясняется разнообразием форм и состава самих белков.

Вопрос 6. Что представляют собой белки — ферменты? Приведите примеры таких белков.

Ферменты представляют собой молекулы белковой природы, которые взаимодействуют с различными веществами, ускоряя их химическое превращение по определенному пути. При этом они не расходуются. В каждом ферменте есть активный центр, присоединяющийся к субстрату, и каталитический участок, запускающий ту или иную химическую реакцию.

Эти вещества ускоряют протекающие в организме биохимические реакции без повышения температуры. Обычно эти молекулы имеют третичную (глобула) или четвертичную (несколько соединенных глобул) белковую структуру. Сначала они синтезируются в линейном виде. А потом сворачиваются в требуемую структуру. Для обеспечения активности биокатализатору необходимо определенное строение. Ферменты, как и другие белки, разрушаются при нагреве, экстремальных значениях pH, агрессивных химических соединений.

Основные свойства ферментов:

специфичность: способность фермента действовать только на специфический субстрат, например, липазы — на жиры;

каталитическая эффективность: способность ферментативных белков ускорять биологические реакции в сотни и тысячи раз;

способность к регуляции: в каждой клетке выработка и активность ферментов определяется своеобразной цепью превращений, влияющей на способность этих белков вновь синтезироваться.

Примеры белков — ферментов: пепсин, каталаза, трипсин, амилаза, протеазы, липазы, глутаматдегидрогеназа, аланинаминотрансфераза (АЛТ), лейцинаминопептидаза (ЛАП), фруктозо — 1,6 — дисфосфат — альдолаза (ФДФ — А) и др.

Вопрос 7. Как реализуется белками защитная функция?

Защитная функция белков в организме заключается в предотвращении проникновения чужеродных веществ, которые могут нанести существенный вред организму. Если же это произошло, специализированные белки способны их обезвредить. Эти защитники называются антителами или иммуноглобулинами. Связывание их с белками возбудителей подавляет функциональную активность последних и останавливает развитие инфекции. Антитела обладают уникальным свойством: они способны отличать чужеродные белки от собственных белков организма.

Кроме того, в ответ на заражение вирусом клетка вырабатывает специальные белки — интерфероны, которые препятствуют размножению носителя инфекции.

Многие организмы используют для защиты или нападения специфические пептиды и белки, называемые токсинами, которые в большинстве случаев являются сильными ядами. Часто эти вещества обладают ферментативной активностью (холерный токсин, коклюшный токсин) или же они могут нарушать структуру клеточных мембран (белки ядов змей и насекомых).

Вопрос 8. Что вам известно о гормонах? Есть ли среди них вещества белковой природы? Приведите примеры.

Гормоны — мельчайшие элементы, вырабатываемые нашим организмом. Это органические биологически активные вещества, которые вырабатываются собственными железами внутренней секреции организма. Поступая в кровь, связываясь с рецепторами определенных клеток, они регулируют физиологические процессы, обмен веществ.

Белкам — гормонам присуща регуляторная функция. Они поддерживают постоянные концентрации веществ в крови и клетках, участвуют в росте, размножении и других жизненно важных процессах. Например, инсулин регулирует содержание сахара в крови.

Примеры гормонов белковой природы (белки и полипептиды) — гормоны гипоталамуса, гормоны гипофиза (соматотропин, кортикотропин, пролактин, вазопрессин и окситоцин, гонадотропный гормон, полипептидные низкомолекулярные гормоны, адренокортикотропный гормон, кортикотропин (АКТГ)); щитовидной железы (тироксин, кальцитонин); гормон паращитовидных желез; гормоны поджелудочной железы (глюкагон и инсулин); гормон почек (эритропоэтин) и др.

Виды белков их функции в организме.

Структурные белки. Влияют на структуру самой клетки, ее форму. Всеми своими свойствами, качествами и даже функциями каждый вид тканей обязан именно структурным белкам. Кроме того, полипептиды, выполняющие эту роль, образуют волосы, ногти, раковины моллюсков, перья птиц. Они же являются определенной арматурой в теле клетки. Хрящи состоят также из этих видов белков. Примеры: тубулин, кератин, актин и другие.

Транспортные белки. Транспортные белки обеспечивают транспортировку питательных и других полезных веществ по всему организму. Например, клеточные мембраны пропускают внутрь клетки не все подряд. И даже некоторые полезные вещества туда не могут проникнуть. Транспортные белки имеют способность проникать сквозь мембраны клеток и проносить с собой эти самые вещества. Гемоглобин — переносчик кислорода и других веществ.

Рецепторные белки. Рецепторные белки наряду с транспортными белками обеспечивают проникновение полезных веществ внутрь клеток. Располагаются рецепторные белки на поверхности мембран, то есть снаружи клеток. Они связываются с поступающими к ним питательными веществами и помогают им проникать внутрь. Важность этого вида белка переоценить невозможно, так как без них внутриутробное развитие может происходить совершенно неправильно или даже полностью прекратиться.

Сократительные белки. Человек двигается благодаря сокращению мышечных тканей. Эту способность им обеспечивают сократительные белки. Как отдельные клетки, так и организм в целом приходит в движение при помощи этого вида белков. Например, миозин, актин и др.

Регуляторные белки. Организм человека ведет свою жизнедеятельность благодаря множеству различных биохимических процессов внутри него. Все эти процессы обеспечивают и регулируют регуляторные белки. Одним из них является инсулин, также половые гормоны.

Защитные белки. Находясь в окружающей среде, организм постоянно контактирует с самыми разными веществами, микроорганизмами и так далее, попадает в самые разные условия. Сохранность здоровья в таких случаях обеспечивают иммунные клетки, которые и являются защитными белками. Также к последним относят прокоагулянты, которые обеспечивают нормальную свертываемость крови. Гаммаглобулин, иммуноглобулин — антитела (защита от инфекций).

Ферменты. Еще один вид белков — ферменты. Они отвечают за правильное протекание биохимических реакций внутри клеток во всем организме. За контроль метаболизма отвечают белки — протеазы.

Вопрос 10. Почему белки называют молекулами жизни?

Более 4 млрд. лет назад на Земле из маленьких неорганических молекул непостижимым образом возникли белки, ставшие строительными блоками живых организмов. Своим бесконечным разнообразием всё живое обязано именно уникальным молекулам белка.

Белки — это природные органические соединения, которые обеспечивают все жизненные процессы любого организма. Из белков построены хрусталик глаза и паутина, панцирь черепахи и ядовитые вещества грибов. С помощью белков мы перевариваем пищу и боремся с болезнями. Благодаря особым белкам по ночам светятся светлячки, а в глубинах океана мерцают таинственным светом медузы.

Белковых молекул в живой клетке во много раз больше, чем всех других (кроме воды, разумеется!). Белки считаются основным материалом для "строительства" клеток. Учёные выяснили, что у большинства организмов белки составляют более половины их сухой массы. И разнообразие видов белков очень велико — в одной клетке такого маленького организма, как бактерия Escherichia соli насчитывается около 3 тыс. различных белков.

Вопрос 11. Используя дополнительные источники информации, найдите сведения о функциях белков ферментов различных классов. Результат оформите в виде таблицы.

Используя дополнительные источники информации, найдите сведения о функциях белков ферментов различных классов. Результат оформите в виде таблицы

Используя дополнительные источники информации, найдите сведения о функциях белков ферментов различных классов. Результат оформите в виде таблицы

Вопрос 12. Найдите в приведённом тексте ошибки. Укажите номера предложений, в которых сделаны ошибки. Исправьте их.

1) Большое значение в строении и жизнедеятельности организмов имеют белки. 2) Это биополимеры, мономерами которых являются азотистые основания. 3) Белки входят в состав плазматической мембраны. 4) Все белки выполняют в клетке ферментативную функцию. 5) Молекулы белка несут наследственную информацию о признаках организма.6) Молекулы белка входят в состав рибосом.

Ответ. Ошибки сделаны в предложениях под номерами: 2, 4, 5.

2)Это биополимеры, мономерами которых являются аминокислоты, соединенные между собой пептидной связью.

4)Не все белки выполняют в клетке ферментативную функцию. ИЛИ…. Все белки выполняют в клетке различные функции.

5) Молекулы белка не несут наследственную информацию о признаках организма. ИЛИ…Наследственная информация о признаках организма зашифрована в нуклеиновых кислотах.

Вопрос 13. Почему в запасных тканях семян растений (эндосперме, семядолях), даже очень богатых углеводами или жирами, обязательно присутствуют белки?

Семена у растений наиболее надежно обеспечивают их размножение и распространение. В семени содержится необходимый для прорастания зародыша запас питательных веществ. Белки при необходимости используются ими для получения аминокислот и энергии. Белки являются основным строительным материалом клеток. Также белки в сухом состоянии денатурируются значительно медленнее, чем белки оводненные, инактивирование ферментов в сухом состоянии происходит гораздо медленнее, чем в присутствии влаги. Поэтому сухие семена могут выдержать нагревание до гораздо более высоких температур, чем те же споры или семена в увлажненном состоянии.

Цель: показать наличие белков в биологических объектах.

Оборудование: штатив с пробирками, водяная баня, кристаллизатор со льдом, мерный стакан на 50 мл.

Реактивы: куриное яйцо, концентрированная азотная кислота, раствор аммиака, гидроксид натрия, раствор медного купороса, вода.

Ход работы:

1. Приготовьте раствор белка.

2. Ксантопротеиновая реакция. В пробирку налейте 2—3 мл раствора белка и добавьте несколько капель азотной кислоты. Соблюдайте технику безопасности при работе с химическими реагентами! Нагрейте содержимое пробирки, при этом образуется жёлтый осадок. Охладите смесь и добавьте раствор аммиака до перехода жёлтой окраски в оранжевую.

3. Биуретовая реакция. В пробирку налейте 2—3 мл раствора белка и 2—3 мл раствора гидроксида натрия, затем 1—2 мл раствора медного купороса. Появляется фиолетовое окрашивание.

4. Запишите результаты эксперимента и сделайте вывод.

Ксантопротеиновая реакция открывает наличие в белках циклических аминокислот — триптофана, фенилаланина, тирозина, содержащих в своем составе ароматическое ядро. Ряд белков при добавлении к ним концентрированной азотной кислоты при нагревании дают желтое окрашивание, которое может переходить в оранжевое в щелочной среде.

Реакция вызвана нитрованием бензольного ядра указанных циклических аминокислот и образованием нитросоединений желтого цвета.

Реакция вызвана нитрованием бензольного ядра указанных циклических аминокислот и образованием нитросоединений желтого цвета

Взаимодействие с концентрированной азотной кислотой — белый осадок, нагревание — появлением желтой окраски, добавление аммиака — появление оранжевой окраски.

Формулы реакции

Ксантопротеиновую реакцию дают почти все белки. Ксантопротеиновая реакция обуславливает появление желтого окрашивания при попадании концентрированной азотной кислоты на кожу, ногти. Эту реакцию могут давать и более простые ароматические соединения (например, фенолы). Исключение составляют клупеин и сальмин (из группы протаминов) и желатина, в молекуле которых почти полностью отсутствуют ароматические аминокислоты.

Биуретовая реакция является универсальной на пептидную связь в белках. Вещества, имеющие в своем составе не менее 2 — х пептидных связей дают эту реакцию.

Реакция состоит в том, что в щелочной среде в присутствии сернокислой меди белки и полипептиды дают сине — фиолетовое или красно — фиолетовое окрашивание в зависимости от длины пептида вследствие образования комплексных соединений меди с пептидной группой. Продукты гидролиза белков (пептоны) могут давать розовое, красное окрашивание.

Продукты гидролиза белков (пептоны) могут давать розовое, красное окрашивание

Щелочная среда приводит к появлению отрицательного заряда вследствие диссоциации ОН — группы, благодаря этому кислород взаимодействует с медью с образованием солеобразной связи, а медь в свою очередь с атомами азота связана через дополнительно координационные связи за счет использования их неподеленных электронных пар. Это ведет к образованию стабильного комплекса.

Образование стабильного комплекса

Вывод: Ксантопротеиновая и биуретовая реакции — качественные реакции на белки. С помощью этих реакций можно доказать наличие белков в биологических объектах.

Читайте также: