Какие операции можно осуществлять с множествами

Обновлено: 25.06.2024

Понятие множества является фундаментальным понятием современной математики. Мы будем считать его первоначальным и теорию множеств строить интуитивно. Дадим описание этого первоначального понятия.

Множество – это совокупность объектов (предметов или понятий), которая мыслится как единое целое. Объекты, входящие в эту совокупность, называются элементами множества.

Можно говорить о множестве студентов первого курса математического факультета, о множестве рыб в океане и т.д. Математика обычно интересуется множеством математических объектов: множество рациональных чисел, множество прямоугольников и т.д.

Множества будем обозначать большими буквами латинского алфавита, а его элементы малыми.

Существует два основных способа задания множеств: перечисление его элементов и указание характеристического свойства его элементов. Первый из этих способов применяется, в основном, для конечных множеств. При перечислении элементов рассматриваемого множества его элементы обрамляются фигурными скобками. Например, обозначает множество, элементами которого являются числа 2, 4 , 7 и только они. Этот способ применим не всегда, так как, например, множество всех действительных чисел таким образом задать невозможно.

Характеристическое свойство элементов множества M – это такое свойство, что всякий элемент, обладающий этим свойством, принадлежит M, а всякий элемент, не обладающий этим свойством, не принадлежит M. Множество элементов, обладающих свойством , обозначается так:

Наиболее часто встречающиеся множества имеют свои особые обозначения. В дальнейшем будем придерживаться следующих обозначений:

N = – множество всех натуральных чисел;

Z = – множество всех целых чисел;

– множество всех рациональных чисел;

R – множество всех действительных (вещественных) чисел, т.е. рациональных чисел (бесконечных десятичных периодических дробей) и иррациональных чисел (бесконечных десятичных непериодических дробей);

– множество всех комплексных чисел.

Приведем более специальные примеры задания множеств с помощью указания характеристического свойства.

Пример 1. Множество всех натуральных делителей числа 48 можно записать так: (запись используется только для целых чисел , и означает, что делится на ).

Пример 2. Множество всех положительных рациональных чисел, меньших 7, записывается следующим образом: .

Пример 3. – интервал действительных чисел с концами 1 и 5; – отрезок действительных чисел с концами 2 и 7.

Определение 1. Множества и называются равными (обозначается А=В), если эти множества состоят из одних и тех же элементов.

Определение 2. Если каждый элемент множества принадлежит множеству , то называют подмножеством множества .

Очевидно следующее утверждение: множества и равны тогда и только тогда, когда и .

На этом утверждении основан универсальный метод доказательства равенства двух множеств: чтобы доказать, что множества и равны, достаточно показать, что является подмножеством множества , а является подмножеством множества .

Это наиболее употребительный способ, хотя и не единственный. Позже, познакомившись с операциями над множествами и их свойствами, мы укажем другой способ доказательства равенства двух множеств – с помощью преобразований.

В заключение заметим, что часто в той или иной математической теории имеют дело с подмножествами одного и того же множества U, которое называют универсальным в этой теории. Например, в школьной алгебре и математическом анализе универсальным является множество Rдействительных чисел, в геометрии – множество точек пространства.

Операции над множествами и их свойства

Над множествами можно выполнять действия (операции), напоминающие сложение, умножение и вычитание.

Определение 1. Объединением множеств и называется множество, обозначаемое через , каждый элемент которого принадлежит хотя бы одному из множеств или .

Сама операция , в результате которой получается такое множество, называется объединением.

Краткая запись определения 1:

Определение 2. Пересечением множеств и называется множество, обозначаемое через , содержащее все те и только те элементы, каждый из которых принадлежит и , и .

Сама операция , в результате которой получается множество , называется пересечением.

Краткая запись определения 2:

Например, если , , то , .

Множества можно изображать в виде геометрических фигур, что позволяет наглядно иллюстрировать операции над множествами. Такой метод был предложен Леонардом Эйлером (1707–1783) для анализа логических рассуждений, широко применялся и получил дальнейшее развитие в трудах английского математика Джона Венна (1834–1923). Поэтому такие рисунки называют диаграммами Эйлера-Венна.

Операции объединения и пересечения множеств можно проиллюстрировать диаграммами Эйлера–Венна следующим образом:

– заштрихованная часть; – заштрихованная часть.

Можно определить объединение и пересечение любой совокупности множеств , где – некоторое множество индексов.

Определение . Объединением совокупности множеств называется множество , состоящее из всех тех и только тех элементов, каждый из которых принадлежит по крайней мере одному из множеств .

Определение . Пересечением совокупности множеств называется множество , состоящее из всех тех и только тех элементов, каждый из которых принадлежит любому из множеств .

В случае, когда множество индексов конечно, например, , то для обозначения объединения и пересечения совокупности множеств в этом случае обычно пользуются обозначениями:

Например, если , , , то , .

С понятиями объединения и пересечения множеств неоднократно встречаются в школьном курсе математики.

Пример 1.Множество М решений системы неравенств

является пересечением множеств решений каждого из неравенств этой системы: .

Пример 2.Множество М решений системы

является пересечением множеств решений каждого из неравенств этой системы. Множество решений первого уравнения – множество точек прямой , т.е. . Множество . Множество состоит из одного элемента – точки пересечения прямых.

Пример 3.Множество решений уравнения

где , является объединением множеств решений каждого из уравнений , , т.е.

Определение 3. Разностью множеств и называется множество, обозначаемое через , и состоящее из всех тех и только тех элементов, которые принадлежат , но не принадлежат .

Определение 4. Если U – универсальное множество и U, то разность U называется дополнением множества М (до U) и обозначается через , , , или .

Краткие записи определений 3 и 4:

Операции разности и дополнения множеств можно проиллюстрировать диаграммами Эйлера-Венна:

Пример 4.Если , , то , .

Определение 5. Объединение множеств и называется симметрической разностью множеств , и обозначается через , т.е.

Следующий пример иллюстрирует симметрическую разность множеств и показывают, что операция разности множеств не обладает свойством коммутативности (переместительности), и демонстрируют некоторые возможные частные случаи для разности множеств A и B .

Пример 5.

– заштрихованная часть; ; – заштрихованная часть.

Обозначим через B(U) множество всех подмножеств универсального множества U с операциями объединения, пересечения и дополнения. Полученную математическую структуру называют алгеброй множествилиалгеброй Булямножеств(вчесть ирландского математика и логика Джорджа Буля (1816–1864)). Через будем обозначать множество всех подмножеств произвольного множества и называть его булеаном множества .

Перечисленные ниже равенства справедливы для любых подмножеств A, B, C универсального множества U.Поэтому их и называют законами алгебры множеств.

В этой статье рассмотрим очень важную тему, как в математике, так и в информатике – множества. Ниже Вы найдете основные определения и понятия, свойства множеств, их виды и примеры. Материал изложен таким образом, что разберется даже полный чайник. Здесь приведены, только основы, которые обычно проходятся в рамках школьной программы. Читайте!

Основные положения и обозначения

Теория множеств появилась благодаря знаменитому немецкому математику Гео́рг Ка́нтор (3 марта 1845, Санкт-Петербург — 6 января 1918, Галле (Заале)) — немецкий математик, ученик Вейерштрасса. Наиболее известен как создатель теории множеств.

'>Георгу Кантору . Именно он с 1872 по 1884 год опубликовал работы, в которых были изложены основные положения и свойства, касающиеся данной темы.

Георг Кантор основоположник теории множеств

Итак, начнем с основных понятий. Основное определение имеет следующий вид:

Множества (м-ва – сокр.) – наборы элементов объединенных по какому либо признаку.

Обозначаются они с помощью заглавных латинских букв, а их элементы указываются в фигурных скобках.

Примеры

​ \( S = \left\ < а, б, в, г, д, …, ю, я \right\>\) – мн-во букв русского алфавита.
\( S = \left\ < Алексей, Анатолий, Галина, …, Александр, Ирина \right\>\) – мн-во имен студентов в группе.
\( S = \left\ < 🐵, 🙈, 🙉, 🙊 \right\>\) – мн-во смайликов с изображением обезьянок.

С основным понятием разобрались, перейдем к остальной теории.

Подмножества

Подмножество – множество S1 является подмножеством S, если каждый элемент из S1 содержится (включен) в S.

Множества

Вернемся к нашему примеру с мн-ом имен студентов в группе, тогда S1 = – множество женских имен девушек, которые учатся в этой группе. В результате мы можем сказать, что S1 является подмножеством S .

Также Вы можете выделить подмножество мужских имен, или сделать любую выборку по какому-нибудь признаку.

Мощность

Следует также выделить такое понятие, как мощность. Имеет оно следующий вид:

Мощность – количество элементов, которое содержится в множестве.

Мн-ва называются равномощными тогда и только тогда, когда количество элементов одного из них равно количеству элементов другого.

Причем неважно, какие элементы будут в этих мн-ах. Так в одном из них могут содержаться 26 букв английского алфавита, а в другом 26 марок японских автомобилей, при этом они будут равномощными.

Мощность является одним из тех свойств, благодаря которому мы можем проводить сравнение двух (или более) м-в.​​

Равенство

Необходимо сказать и про равенство. Для чайников правило будет выглядеть так:

Два (или несколько) множеств равны только тогда, когда равны все их элементы.

Теперь изучим виды и другие свойства мн-в в математике.

Существует много критериев и свойств, по которым мы можем классифицировать множества. Например, мы можем разделить их по количеству элементов:

  1. Пустые – такие м-ва не содержат ни одного элемента. Обозначаются значком ​\( \varnothing \).
  2. Одноэлементные – как понятно из названия, состоят из одного элемента.
  3. Универсальные – состоят из ВСЕХ объектов, которые есть в мире.

А можем поделить их на конечные (ограниченные) и бесконечные:

  1. В конечных мн-ах имеется ограниченное число элементов (вспомните про пример с именами студентов).
  2. Бесконечные. Например, м-во целых (Z) и рациональных (Q) чисел в математике.

Теперь рассмотрим примеры множеств в математике.

Примеры

Натуральные числа

Натуральные числа в математике – это те числа, которые мы используем при счете (1, 2, 3 и т.д.). Сюда не относятся отрицательные величины и нуль. Запись: \( N = \left\ < 1, 2, 3, 4, 5, … \right\>\).

Целые числа

Получаются из множества натуральных чисел. К ним добавляются отрицательные числа и нуль. \( Z = \left\ < 0, \pm 1, \pm 2, \pm 3, \pm 4, \pm 5, … \right\>\).

Рациональные числа

Здесь множество задается следующим образом: ​ \( Q = \left\ < \ | \ m \in Z, \ n \in N\right\> \) ​. В формуле m представляет собой целый числитель, а n – натуральный знаменатель.

Так как любое число в математике можно представить в виде дроби (например, ​ \( 5 = \) ​), то целые числа являются подмножеством рациональных чисел. Натуральные же числа являются подмножеством целых чисел.

\[ N \subset Z \subset Q \]

Эту теорию Вам надо запомнить.

Операции

В этом разделе рассмотрим основные операции (действия) над множествами в математике.

Пересечение

Операция пересечения эквивалентна логической конструкции И (логическое умножение) . В результате пересечения образуется множество состоящее из элементов, которые входят и в множество S1 ​​и одновременно с этим в S2. Для обозначения используется значок \( \cap \) . Ниже приведен пример, отображенный с помощью кругов Эйлера – Венна (не путать с диаграммами Эйлера).

\( S_ = \left\ < 🙉, 🙊 \right\>\) — обезьянки показывающие лапки и глаза

\( S_ = \left\ < 🙈, 🙉 \right\>\) — мартышки показывающие лапы и рот

Надо найти \( S_ \ \cap \ S_ \). Для этого воспользуемся диаграммами Эйлера — Венна:

Множество

Решение: ​ \( S_ \ \cap \ S_ = \left\ < 🙉 \right\>\) т.к. 🙉 ​ входит и в S1 и в S2.​

Объединение

Операция объединения соответствует логическому ИЛИ (логическому сложению) . В результате объединения получается множество, состоящее из всех элементов множеств S1 и S2. Для обозначения используем знак \( \cup \) .

Объединение множеств

​Решение: ​ \( S_ \ \cup \ S_ = \left\ < 🙈, 🙉, 🙊 \right\>\) ​

Разность

Вычитание множеств . Имеет следующее обозначение \( S_ \setminus S_ \) . В результате данной операции получим все элементы, которые принадлежат множеству S1 и в то же время НЕ принадлежат S2.

Разность множеств

Решение: ​ \( S_ \ \setminus \ S_ = \left\ < 🙊 \right\>\)

Следует отметить, что здесь приведены не все операции. Например, не написано про симметрическую разность и законы Моргана. Их проходят в рамках высшей математики.

Заключение

Теперь Вы знаете, что такое мн-ва, знаете их свойства и какие операции над ними можно выполнять. Надеюсь я объяснил всю теорию так, что понял даже полный чайник. Если же у Вас возникли вопросы, то задавайте их в комментариях. Также на нашем сайте Вы можете прочитать другие статьи, например про представления чисел в компьютере. Рассказывается как выполнять с ними такие действия, как перемножение, получение суммы и деление.

Читайте также: