Какая нервная система осуществляет приспособление к природной и социальной среде

Обновлено: 25.06.2024

Значение функционального разделения нервной системы на соматический и вегетативный отделы. В процессе эволюции позвоночных животных произошло разделение функций нервной системы.

Её соматический отдел специализируется на восприятии информации, поступающей из окружающей среды, и управлении движениями тела в пространстве. Вегетативный (автономный) отдел управляет внутренними органами, сосудами и железами.

Вегетативная нервная система слабо подчиняется волевому контролю, и в этом есть определённое её преимущество, поскольку она не даёт нам возможности вмешиваться в веками отлаженную программу работы внутренних органов.

Соматическая нервная система регулирует работу поперечнополосатой мышечной ткани скелетных мышц.

Высшим центром соматической нервной системы является кора больших полушарий. Сюда стекается вся информация от органов чувств и внутренней среды организма. Здесь изыскиваются способы удовлетворения потребностей. В лобных долях коры созревает план будущих действий, который реализуется соматической нервной системой. Цели человека много сложнее, чем цели животных, но и они в конечном счёте сводятся к мышечному движению, будь то работа на станке, письмо, речевое общение или даже чтение (движение глаз, произнесение слов про себя и т. д.). Приспособление к природной и социальной среде, связанное с изменением поведения, осуществляет соматическая нервная система.

Вегетативная (автономная) нервная система, как и соматическая, имеет центральную и периферическую части. Высшим центром вегетативной регуляции является гипоталамус.

Автономная нервная система подразделяется на два подотдела – симпатический и парасимпатический (рис. 131).

Симпатический подотдел автономной нервной системы. Этот подотдел называют системой аварийных ситуаций, так как он активизируется всякий раз, когда организм находится в напряжении. Его высшие центры расположены в боковых столбах верхней и средней частей спинного мозга. От них идут нервы к симпатическим нервным узлам, расположенным вдоль позвоночника. Это парные узлы нервного ствола. Кроме того, имеются и дополнительные узлы, например, в области живота – солнечное сплетение, а также в некоторых других местах.

Под влиянием симпатической нервной системы сердце усиливает свою работу, повышается кровяное давление, увеличивается содержание сахара в крови, сосуды кожи сужаются, перераспределяя кровь к сердцу, мозгу и мышцам, человек бледнеет. Органы пищеварения под действием симпатических нервов затормаживают свою деятельность.

Парасимпатический подотдел автономной нервной системы. Высшие парасимпатические центры находятся в стволе головного мозга и в крестцовой части спинного мозга. Самый крупный из них – центр блуждающего нерва – находится в продолговатом мозге на дне IV желудочка. Блуждающие нервы управляют всеми внутренними органами грудной и брюшной полостей. Половые органы, мочевой пузырь и конечный отдел кишечника контролируются крестцовым отделом спинного мозга. Нервные узлы парасимпатической системы располагаются либо в самих органах, либо недалеко от них (рис. 132).

Рис. 131. Схема строения автономной (вегетативной) нервной системы: 1 – парасимпатические ядра; 2 – симпатические ядра; 3 – узлы симпатического ствола; 4 – блуждающий нерв парасимпатической системы; 5 – парасимпатические узлы в органах

Парасимпатическую систему называют системой отбоя или системой покоя. Она возвращает деятельность сердца в состояние покоя, уменьшает давление и содержание сахара в крови. Под её влиянием дыхание становится более редким, но более глубоким, что позволяет избавиться от продуктов неполного окисления, оставшихся после напряжённой работы. Блуждающий нерв расширяет кожные сосуды и активизирует органы пищеварения.

Рис. 132. Схема симпатической и парасимпатической иннервации вегетативной нервной системы: 1 – нейроны вегетативной нервной системы, находящиеся в головном и спинном мозге; 2 – вегетативные нервные узлы; 3 – иннервируемые органы

Взаимодействие симпатического и парасимпатического подотделов. Оба подотдела автономной нервной системы работают по принципу дополнительности. В состоянии ли покоя, в состоянии ли интенсивной работы находится человек, его внутренние органы получают нервные импульсы как от симпатического, так и от парасимпатического подотдела.

Представим, что человек увидел на остановке нужный ему автобус и побежал. Включилась симпатическая система, просвет сосудов стал сужаться, давление повысилось, и скорость крови возросла. Но если сужение чрезмерно, просвет сосуда становится настолько узким, что кровь по нему вообще не может пройти (это бывает при спазмах сосудов). Но этого не происходит, так как по обратным связям в мозг идут сигналы о неблагополучии и включается парасимпатическая система, которая расширяет сосуды. Так определяется оптимальная величина просвета сосудов, обеспечивающая необходимое давление и скорость крови.

СОМАТИЧЕСКИЙ И ВЕГЕТАТИВНЫЙ (АВТОНОМНЫЙ) ОТДЕЛЫ НЕРВНОЙ СИСТЕМЫ; СИМПАТИЧЕСКАЯ И ПАРАСИМПАТИЧЕСКАЯ ПОДСИСТЕМЫ.

Вопросы

1. Каково значение вегетативной нервной системы?

2. Чем вегетативная нервная система отличается от соматической нервной системы?

Основные положения главы 11

Нервную систему образуют нейроны и другие клетки нервной ткани. Она регулирует работу органов и организма в целом, обеспечивая постоянство внутренней среды, согласованную работу органов, приспособление организма как целого к внешней среде, психическую деятельность.

Морфологически нервная система подразделяется на центральную часть (спинной и головной мозг) и периферическую часть (нервы и нервные узлы).

Спинной мозг находится в позвоночном канале, головной мозг в черепе. Тела нейронов спинного мозга сосредоточены в серых столбах, которые занимают центральную часть спинного мозга и тянутся вдоль всего позвоночника. Тела нейронов головного мозга расположены в сером веществе коры и ядрах, разбросанных среди белого вещества головного мозга. Белое вещество состоит из нервных волокон, связывающих различные центры головного и спинного мозга. В спинном мозге оно занимает его периферическую часть.

Головной мозг подразделяется на отделы: задний мозг, включающий продолговатый мозг, мост и мозжечок, средний мозг и передний мозг, состоящий из промежуточного мозга и полушарий большого мозга. Все отделы мозга выполняют проводниковую и рефлекторную функции.

Функционально нервная система образует два отдела: соматический и вегетативный. Соматический отдел регулирует работу скелетных мышц. Его работа подконтрольна воле человека. Вегетативный отдел регулирует работу внутренних органов, кровеносных сосудов и желёз. Он слабо подчиняется волевому контролю и действует по программе, сформировавшейся в результате естественного отбора и закреплённой наследственностью организма.

Вегетативный отдел состоит из двух подотделов – симпатического и парасимпатического, которые действуют по принципу дополнительности. Благодаря их совместной работе устанавливается оптимальный режим работы внутренних органов для каждой конкретной ситуации.

Глава 12. Анализаторы. Органы чувств

Из этой главы вы узнаете

• как работают органы чувств и анализатор в целом;

• как предупредить возможные нарушения их работы;

• насколько истинна получаемая нами информация.

Вы научитесь

• выделять существенные признаки строения и функционирования органов чувств, анализаторов;

• оценивать работу органов чувств;

• предупреждать зрительные и слуховые расстройства;

• использовать некоторые методы тренировки ряда анализаторов.

§ 48. Анализаторы

1. Чем анализатор отличается от органа чувств?

2. В чём выражена специфичность анализатора?

3. Что такое иллюзии и отчего они происходят?

4. Верную ли информацию о внешнем мире дают нам анализаторы?

Ощущения. Строение и функции анализаторов. Долгое время считалось, что окружающий мир мы познаём только с помощью органов чувств: глазами видим, унтами слышим, языком ощущаем вкус, носом чувствуем запахи, кожей – шероховатость, давление, температуру. На самом деле органы чувств являются лишь начальным звеном восприятия. Оптика нашего глаза фокусирует изображение на зрительные рецепторы сетчатки глаза. Ухо превращает звуковые колебания в механические колебания жидкости внутреннего уха, которые улавливаются слуховыми рецепторами. В любом случае анализ внешних событий и внутренних ощущений начинается с раздражения рецепторов – чувствительных нервных окончаний, или специализированных клеток, реагирующих на физические или химические показатели окружающей их среды, и кончается в нейронах головного мозга.

Рецепторы строго специализированы. Каждая их группа способна воспринимать и переводить на язык нервных импульсов только определённый набор раздражений. Но их опознание возможно только в коре большого мозга, где показания всех рецепторов, вызванные раздражением предмета, объединяются в единый образ.

Анализаторами называют системы, обеспечивающие восприятие, доставку в мозг и анализ в нём какого-либо вида информации (зрительной, слуховой, обонятельной и т. д.). Анализаторы состоят из рецепторов, проводящих путей и центров в коре большого мозга. Каждый анализатор обладает своей модальностью, то есть способом получения своей информации: зрительной, слуховой, вкусовой и т. д. Возбуждения, возникающие в рецепторах органов зрения, слуха, прикосновения, имеют одну и ту же природу – нервные импульсы. Но путаницы не происходит, потому что каждый из нервных импульсов поступает в соответствующую ему зону коры большого мозга. Здесь, в первичных чувствительных зонах, происходит анализ ощущений, во вторичных зонах – формирование образов, полученных от органов чувств одной модальности (например, только от зрения или только от слуха или осязания). Наконец, в третичных зонах коры воспроизводятся образы или ситуации, полученные от органов чувств разных модальностей, например от зрения и слуха.

Значение анализаторов. События, которые развёртываются перед нами в данный момент, мы воспринимаем чётко и ярко. Но мы можем представить себе и прошлые события, хотя они не будут такие яркие. Поэтому спутать их с образами живой действительности невозможно. (Правда, иногда в сознании могут возникать образы, которых на самом деле нет. Тогда говорят о галлюцинациях. Их появление может привести человека к ошибочным, а то и опасным действиям.)

Некоторые ошибки восприятия вызываются физическими причинами. Ложка, опущенная в стакан с водой, кажется сломанной, поскольку преломление света в воде и в воздухе различно. Кажущиеся (ошибочные) изображения называют иллюзиями.

Несмотря на иллюзорные восприятия, мы получаем более или менее верное представление об окружающей нас действительности, поскольку анализаторы взаимно дополняют и уточняют друг друга.

Важное значение имеет и прошлый опыт. Например, может показаться, что вдали рельсы сходятся в одной точке. Но сколько бы мы ни пытались этой точки достичь, она всё время как бы отодвигается, то есть постоянно находится от нас на одном и том же расстоянии. В конце концов человек приходит к твёрдому убеждению, что схождение рельсов в одной точке лишь кажущееся, что это – иллюзия.

ОРГАН ЧУВСТВ, АНАЛИЗАТОР, МОДАЛЬНОСТЬ, РЕЦЕПТОРЫ, НЕРВНЫЕ ПУТИ, ЧУВСТВИТЕЛЬНЫЕ ЗОНЫ КОРЫ БОЛЬШОГО МОЗГА: ПЕРВИЧНЫЕ, ВТОРИЧНЫЕ, ТРЕТИЧНЫЕ; ГАЛЛЮЦИНАЦИИ, ИЛЛЮЗИИ.

Вопросы

1. В чём выражается специализация рецепторов и органов чувств?

2. Что входит в состав анализаторов?

3. Всегда ли наши анализаторы правильно отражают окружающую действительность?

4. Как вы считаете, достаточно ли знать, в какой области коры больших полушарий происходит анализ ощущений, чтобы определить, какое раздражение (слуховое, зрительное, обонятельное и т. д.) подействовало на организм?

§ 49. Зрительный анализатор

1. В чём уникальность зрения?

2. Как защищено глазное яблоко? Каково его строение?

3. Какую функцию выполняют глазные мышцы?

4. Как функционирует зрительный анализатор в целом?

Значение зрения. Уникальность зрения по сравнению с другими анализаторами состоит в том, что оно позволяет не только опознавать предмет, но и определять его место в пространстве, следить за перемещениями.

Большую часть информации человек получает с помощью зрения.

Положение и строение глаза. Глаза, точнее глазные яблоки, расположены в глазницах – парных углублениях черепа (рис. 133). В глубине глазницы заметна щель, через которую в глаз входят сосуды и нервы. К глазному яблоку подходят мышцы, сокращение которых обеспечивает движение глаз. Спереди глаз защищён веками, ресницами и бровями.

В верхнем углу глаза со стороны щеки находится слёзная железа (рис. 134). При опускании подвижного верхнего века железа выделяет слёзы, которые увлажняют и промывают глаз. Слёзная жидкость от наружного верхнего угла глаза идёт в нижний внутренний угол и отсюда попадает в слёзный канал, который выводит избыток слёз в носовую полость. Именно поэтому плачущий человек начинает хлюпать носом.

Рис. 133. Положение глазного яблока в глазнице: 1 – глазное яблоко; 2 – зрительный нерв; 3 – мышцы, приводящие в движение глазное яблоко

Рис. 134. Слёзный аппарат: 1 – слёзная железа; 2 – носослёзный канал

Снаружи глазное яблоко покрыто белочной оболочкой, или склерой, которая в передней части переходит в прозрачную роговицу. Роговица свободно пропускает лучи света.

За склерой находится сосудистая оболочка. Она содержит множество кровеносных сосудов, по которым осуществляется питание глаза. В передней части глаза сосудистая оболочка переходит в радужную. Цвет радужной оболочки и определяет цвет глаз.

В середине радужной оболочки находится круглое отверстие – зрачок. Он играет роль диафрагмы: благодаря клеткам гладкой мышечной ткани зрачок может расширяться и суживаться, пропуская количество света, необходимое для рассмотрения предмета.

За зрачком располагается хрусталик, напоминающий двояковыпуклую линзу. С помощью окружающих его гладких мышц, образующих ресничное тело, хрусталик может менять форму: становиться то более выпуклым, то более плоским. (Хрусталик можно сравнить с механизмом точной настройки резкости изображения в оптических приборах.) Когда предмет находится далеко от глаз, хрусталик делается более плоским, когда близко – более выпуклым, фокусируя световые лучи на задней внутренней стенке глаза, которая называется сетчатой оболочкой или сетчаткой (рис. 135). Сетчатая оболочка – тонкий и очень нежный слой клеток – зрительных рецепторов.

Рис. 135. Строение глаза: А – внутреннее строение глаза; Б – восприятие света; 1 – склера (белочная оболочка); 2 – роговица; 3 – хрусталик; 4 – радужная оболочка со зрачком; 5 – ресничное тело; 6 – сосудистая оболочка; 7 – стекловидное тело; 8 – сетчатка; 9 – колбочки; 10 – палочки; 11 – зрительный нерв

Внутренняя часть глаза заполнена стекловидным телом, а пространство между роговицей и радужкой, между радужкой и хрусталиком – прозрачной жидкостью. Поэтому внутри глаза свет проходит через однородную прозрачную среду.

Ход лучей через прозрачную среду глаза. Световой поток из воздушной среды проходит через роговицу и преломляется в ней, так как её оптическая плотность близка к оптической плотности воды. На пути светового потока располагается радужка, которая пропускает его через зрачок. Если свет, попадающий на сетчатку, слишком яркий, зрачок суживается до диаметра, при котором освещённость на сетчатке станет оптимальной. Если освещённость слабая – зрачок расширяется.

В этом процессе участвует вегетативная нервная система: блуждающий нерв суживает зрачок, а симпатический – расширяет (см. рис. 131). Благодаря совместной работе этих нервов устанавливается нужный диаметр зрачка.

С помощью аналогичных рефлексов изменяется и кривизна хрусталика. Пройдя через стекловидное тело, лучи света попадают на сетчатку, где образуется уменьшенное перевёрнутое изображение объекта.

Строение сетчатки. Рецепторы сетчатки – это светочувствительные клетки (фоторецепторы) палочки и колбочки. Они примыкают к чёрной сосудистой оболочке. Её волоконца окружают каждую из этих клеток с боков и сзади, образуя чёрный футляр, обращённый открытой стороной к свету.

Колбочки обладают меньшей светочувствительностью, но способны реагировать на цвет. Они сосредоточены преимущественно в центральной части сетчатки, в так называемом жёлтом пятне. В остальной части сетчатки находятся и колбочки, и палочки, однако по её периферии преобладают палочки. Последние передают только чёрно-белое изображение. Зато они обладают большей чувствительностью и могут действовать даже при слабом освещении. Перед палочками и колбочками располагаются нервные клетки, которые воспринимают и обрабатывают информацию, полученную от зрительных рецепторов. (Свет проходит через них.) Аксоны нейронов образуют зрительный нерв. В месте, где он выходит из глаза, зрительных рецепторов нет. Здесь находится слепое пятно, которое, как правило, человеком не замечается, но его можно выявить довольно простыми опытами (рис. 136).

Корковая часть зрительного анализатора. Зрительные нервные пути устроены так, что левая часть поля зрения от обоих глаз попадает в правое полушарие коры большого мозга, а правая часть поля зрения – в левое. Если изображения от правого и левого глаза попадают в соответствующие мозговые центры, то они создают единое объёмное изображение. Зрение двумя глазами называют бинокулярным зрением.

Итак, на сетчатке получается уменьшенное и перевёрнутое изображение предмета, но мы видим изображение прямое и в реальных размерах. Почему? Это происходит потому, что наряду со зрительными образами в мозг поступают нервные импульсы от глазных мышц. Нетрудно убедиться: когда мы смотрим вверх, зрачки движутся вверх, а когда вниз – то и зрачки опускаются вниз. Более того, глазные мышцы работают непрерывно. Они как бы описывают контуры предмета, а эти движения фиксируются головным мозгом и могут воспроизводиться другими органами, например рукой. О том, что это возможно, говорит тот факт, что, научившись писать рукой, мы можем знакомые буквы изобразить ногой или даже зажав в зубах карандаш.

Бинокулярное зрение не только позволяет воспринимать объёмное изображение, поскольку одновременно охватывается и левая, и правая части объекта, но и определять расстояние до него. Чем дальше предмет, тем мельче его изображение на сетчатке. Это помогает нам определять расстояние до предмета.

ГЛАЗНОЕ ЯБЛОКО, ГЛАЗНИЦА, ГЛАЗНЫЕ МЫШЦЫ, СЛЁЗНАЯ ЖЕЛЕЗА, СЛЁЗНЫЙ КАНАЛ, БЕЛОЧНАЯ ОБОЛОЧКА (СКЛЕРА), РОГОВАЯ ОБОЛОЧКА (РОГОВИЦА), ЗРАЧОК, РАДУЖНАЯ ОБОЛОЧКА (РАДУЖКА), ХРУСТАЛИК, РЕСНИЧНОЕ ТЕЛО, СТЕКЛОВИДНОЕ ТЕЛО, СЕТЧАТКА, ПАЛОЧКИ И КОЛБОЧКИ, ЖЁЛТОЕ ПЯТНО, СЛЕПОЕ ПЯТНО, БИНОКУЛЯРНОЕ ЗРЕНИЕ.

Вопросы

1. Какие функции выполняют брови, ресницы, веки, слёзные железы?

2. Что такое зрачок? Каковы его функции?

3. Как работает хрусталик?

4. Где располагаются колбочки и палочки? Каковы их свойства?

5. Из каких частей состоит зрительный анализатор и как работает его корковая часть?

6. Как вы считаете, существует ли взаимосвязь между строением глаза и средой, в которой обитает тот или иной организм?

7. Попробуйте предположить, что произойдёт со зрением человека, если он наденет очки, которые переворачивают изображение, и будет носить их не снимая.


Учи.Дома запускает бесплатный марафон в котором каждый день. В течении 5 дней утром ты будешь получать одно задание по выбранному предмету, а вечером его решение. Твоя задача, успеть выполнение задание до того как получишь ответ.

Бесплатно, онлайн, подготовка к ЕГЭ

Предварительный просмотр:

Урок биологии 8 класс. Составила Бондарь Е.М, учитель биологии МБОУ СОШ №9 г. Холмска.

«Собраться вместе — это начало.

Держаться вместе — это прогресс.

Цель : изучить строение и функции нервной системы человека

  1. Применение новых понятий (нейрон, нейроглия, аксон, дендрит, нервы, нервные узлы, белое и серое вещество, ЦНС, ПНС, вегетативная и соматическая нервная система, спинной и головной мозг)
  2. 2. Развивающая

оперировать (определять и делить, обобщать и ограничивать, сравнивать) понятиями (нейрон, нейроглия, аксон, дендрит, нервы, нервные узлы, белое и серое вещество, ЦНС, ПНС, вегетативная и соматическая нервная система, спинной и головной мозг);

Формирование диалектико-материалистического мировоззрения на основе философских категорий: сущность – явление, качество – количество, общее - особенное- единичное, причина – следствие.

Организационный момент . Приветствие учителя и учеников, подготовка необходимых материалов к уроку, проверка присутствия учеников по списку.

2.Актуализация опорных знаний

Проверка знаний учащихся по теме Железы внутренней секреции.

1. Гормон, образуемый в мозговом веществе надпочечников, способствующий мобилизации ресурсов организма . (адреналин)

2. Гормон поджелудочной железы, стимулирующий распад гликогена и образование глюкозы. ( глюкагон)

3. Железа, вырабатывающая гормон тироксин. (щитовидная)

4. железа внутренней секреции расположенная на нижней поверхности головного мозга, гормоны которой влияют на гормональную активность других желез (гипофиз)

5. Назовите железы смешанной секреции (поджелудочная, половые)

6. Какие железы называют железами внутренней секреции? ( гормоны выделяют в кровь)

7. Гормон поджелудочной железы, стимулирующий образование гликогена из глюкозы.

Тест по теме: Железы внешней и внутренней секреции Вариант 1

1. К каким железам относится гипофиз?

1. внешней секреции 2 внутренней 3. смешанной 4. вообще не входит в число желез

2. В каком случае развивается базедова болезнь?

1. при недостаточной функции эпифиза 2. при недостаточной функции надпочечников

3. при гиперфункции щитовидной железы 4. при гиперфункции поджелудочной железы.

3. Что развивается при недостатке гормона поджелудочной железы?

1. сахарный диабет 2. гипертония 3. аллергия 4. кретинизм

4. Как называются вещества – регуляторы, которые железы внутренней секреции выделяют в кровь?

1. вирусы 2. железы 3. ферменты 4 гормоны.

5. Как называются гормоны, выделяемые надпочечниками и повышающие работоспособность в моменты напряженной физической и психической деятельности ?

Тест по теме: Железы внешней и внутренней секреции Вариант 2

1. К каким железам относится печень?

1. внешней секреции 2. внутренней секреции

3. смешанной секреции 4.не входит в состав желез

2. Какой орган выделяет гормон роста?

1. щитовидная железа 2. эпифиз 3. гипофиз 4. надпочечники

3. Кретинизм у детей развивается при : 1. гиперфункции щитовидной железы

2. недостаточной функции щитовидной железы 3. гиперфункции надпочечников

4. недостаточной функции поджелудочной железы.

4. Как называется гормон поджелудочной железы?

1. тироксин 2. норадреналин 3. адреналин 4. инсулин.

5. Закончите предложение .

Железы смешанной секреции – это половые железы и _________________.

II. Формирование новых знаний.

  1. обеспечивает поддержание гомеостаза
  2. обеспечивает согласованную работу всех органов и систем организма
  3. осуществляет ориентацию организма во внешней среде и приспосабливающие реакции на ее изменения
  4. составляет основу психической деятельности: речь, мышление, социальное поведение

Во фронтальной беседе закрепляются полученные знания, затем учащиеся работают в рабочих тетрадках, где выполняют упражнения по данному заданию.

5. Работа в парах со словарем терминов

Аксон – удлиненный отросток нейрона, проводящий нервные импульсы от тела клетки к другим нейронам или рабочим органам.

Вегетативная нервная система – часть нервной системы, которая обеспечивает регуляцию деятельности внутренних органов и постоянство состава внутренней среды организма и не подчиняется воле человека.

Нервный узел – скопление тел нервных клеток за пределами центральной нервной системы.

Ганглий – нервный узел.

Дендрит – короткий, ветвящийся отросток нейрона, проводящий нервные импульсы к телу нейрона.

Нейрон – основная структурная и функциональная единица нервной системы.

Нейроглия – совокупность вспомогательных клеток нервной ткани, выполняющих опорную, питательную и защитную функцию.

Нервное окончание – специализированное образование в концевом разветвлении отростков нейрона, служит для приема или передачи сигналов.

Нервы – тяжи нервной ткани, связывающие мозг и нервные узлы с другими органами тела

а) двигательные – образованы отростками двигательных нейронов, передающие нервные импульсы от центральной нервной системы на периферию;

б) чувствительные – образованы отростками чувствительных нейронов, передающие нервные импульсы от органов чувств в центральную нервную систему.

в) смешанные – в состав которых входят как двигательные, так и чувствительные нервные волокна, передающие импульсы в двух направлениях.

Периферическая нервная система – часть нервной системы, образованная нервными клетками, лежащими за пределами центральной нервной системы

Синапс – специализированная структура в месте контакта между нервными клетками или между нервными клетками и рабочими (исполнительными) органами.

Нервы – скопления отростков нервных клеток вне ЦНС, заключенные в общую соединительнотканную оболочку и проводящие нервные импульсы.

  • чувствительные – образованы дендритами чувствительных нейронов
  • двигательные – образованы аксонами двигательных нейронов
  • смешанные – образованы аксонами и дендритами

Нервные узлы – скопления тел нейронов вне ЦНС.

Нервные окончания: рецепторные – концевые образования дендритов в органах; воспринимают раздражение и преобразуют в нервный импульс.

  • эффекторные – концевые образования аксонов в рабочих органах: мышцах, железах.

Рефлекс – ответная реакция организма на раздражитель, осуществляемая и контролируемая ЦНС

Почему нервная система является дирижером нашего организма?

Она регулирует работу органов, обеспечивая постоянство внутренней среды, согласованную работу органов, приспособление организма как целого к внешней среде, психическую деятельность.

Рефлекторная дуга – путь, по которому проводятся нервные импульсы при осуществлении рефлекса.

Принцип обратной связи:

информация от рецепторов рабочего органа поступает в нервный центр, чтобы подтвердить эффективность реакции и, при необходимости, скоординировать ее.

III. Закрепление полученных знаний.

1.Беседа по пунктам плана и поставленной цели.

2.Работа в тетрадях с печатной основой

Д/З работа с учебником на странице 50-53 . Ответить на вопросы после параграфа

  • Показать значение нервной системы в поддержании гомеостаза, согласованной работе внутренних органов, обеспечении выживания организма и его приспособления к природной и социальной среде.
  • Дать понятие о строении и функциях ЦНС, распределение белого и серого вещества спинного и головного мозга.
  • Рассмотреть строение и функции спинного мозга, рефлекс, рефлекторную дугу спинномозговых рефлексов.

I. Проверка знаний.

Раскрыть роль нервной системы в обеспечении постоянства внутренней среды организма.

Рефлексы и их характеристика.

II. Новый материал

Нервная система (НС) - совокупность специальных структур, объединяющая и координирующая деятельность всех органов и систем организма в постоянном взаимодействии с внешней средой.

В 3 года мозг человека развит на 80%. Максимальное развитие к 20 годам.

Чем больше диаметр волокна нерва, тем с большей скоростью по нему распространяется возбуждение.

Спинной мозг (СМ) - тяж длинной 45 см., диаметром 1 см. В центре - канал, заполненный спиномозговой жидкостью.

СМ состоит из 31-32 сегментов:

  • 8 шейных (С1-С8)
  • 12 грудных (Th1-Th12)
  • 5 поясничных (L1-L5)
  • 1-2 копчиковых
  • пояснично-крестцовые нервы следуют в канал на значительном расстоянии и образуют конский хвост

СМ иннервирует скелетную мускулатуру (кроме мышц головы) и внутренние органы.

  • передние корешки - аксоны двигательных нейронов
  • задние корешки - аксоны чувствительных нейронов

Спиномозговая жидкость (СМЖ) вырабатывается сосудистыми сплетениями желудочков мозга; по составу похожа на плазму крови, V=120-150 мл.

  • амортизатор - предохраняет ГМ и СМ от сотрясений
  • доставка питательных веществ ко всем отделам ЦНС и удаление продуктов обмена
  • поддержание уровня осмотического давления (60-140 мм. вод. ст.)

2. Работа с ключевыми словами, выделенными на странице.

  • дать общие топографические сведения о положении головного мозга в черепе, его строении и функциях,
  • раскрыть роль продолговатого, среднего, промежуточного мозга и мозжечка в осуществлении условиях рефлексов и выяснить их значение.
  • воспитательная: дать сведения по профилактике травматизма, антиалкогольная и антиникотиновая пропаганда.
  • развивающая: продолжить развитие умений и навыков наблюдать и описывать эксперимент.

Оборудование : таблица “Строение головного мозга”, разборные модели головного мозга.

I. Проверка знаний.

1. Указать на таблице ЦНС и ПНС и рассказать об их строении и значении.

2. Показать на таблице и скелете месторасположение спинного мозга и отходящих от него нервов и рассмотреть их строение и функции.

3. Раскрыть особенности рефлекторной и проводящей функций СМ, его связь с ГМ.

II. Новый материал

- Что вам известно о головном мозге?

- Что хотели бы узнать?

Головной мозг располагается в черепе человека и имеет сложную форму. Масса головного мозга у взрослого человека колеблется от 1100 до 2000 г, составляя в среднем 1300-1400 г. Это всего около 2% от массы тела, но составляющие мозг клетки потребляют до 25% энергии, вырабатываемой в организме. Обычно масса головного мозга у женщин несколько меньше, чем у мужчины, это различие обусловлено разной массой их тел.

Проблема: можно ли утверждать, что чем больше мозг (голова), тем умнее человек?

Подумайте : у слона самый большой мозг, но он не самое умное животное, так как важно соотношение веса мозга к весу тела. У слона оно невысокое, а у дельфина – выше, чем у человека. Но ведь человек держит рыбку, а дельфин за ней прыгает, а не наоборот. Почему?

Многие думают, что чем больше мозг, тем умнее человек. Вес мозга И.С. Тургенева 2012 г, Анатоля Франса – 1017 г, а у Луи Пастера (создателя микробиологии), как показало вскрытие, после перенесенной болезни вообще не работала половина переднего мозга. Выскажите ваше мнение.

Рассмотрим внешний вид головного мозга на муляже:

- расположение белого и серого вещества;
- наличие извилин;
- кора больших полушарий.

Человек имеет 3й по массе мозг (1400 гр.) после слона (5 кг.) и кита (2,5 кг). соотношение мозга и массы всего тела у кита 1:40 000; слона 1:500; человека 1:40.

Наиболее активно мозг работает между 10 и 12 часами утра.

Познакомимся со строением и функциями отделов головного мозга.

Головной мозг расположен в полости черепа. В соответствии с развитием пяти мозговых пузырей головной мозг человека разделяют на пять отделов: продолговатый мозг, задний мозг, средний мозг, промежуточный мозг и конечный мозг.

Продолговатый мозг, задний мозг и средний мозг имеют черты сходства в строении со спинным мозгом. От них также отходят нервы (черепные нервы), осуществляющие связь мозга с кожей, мышцами и внутренними органами. Поэтому эти отделы мозга объединяют под общим названием — стволовая часть мозга . Нередко к ней относят еще и промежуточный мозг.

Конечный мозг , особенно его полушария, устроен совершенно иным образом. Основная его отличительная особенность связана с наличием коры мозга, которая представляет собой колоссальное скопление нервных клеток (около 109), расположенных в несколько слоев. Наибольшего развития она достигает у человека, головной мозг которого под влиянием труда и членораздельной речи приобретает новые черты строения, отличные от таковых у животных. Полушария головного мозга у человека являются тем материальным субстратом, с которым связана высшая нервная деятельность.

Продолговатый мозг является продолжением спинного мозга, поэтому в их строении много общего. Только серое вещество у продолговатого мозга располагается отдельными скоплениями – ядрами. Сходны и функции: рефлекторные и проводящие. Через ядра продолговатого мозга осуществляются многие рефлекторные процессы, например такие, как кашель, чихание, слезоотделение и др. Здесь же расположены нервные центры, ответственные за акты глотания, работу пищеварительных желез. В продолговатом мозге лежат и жизненно важные центры, участвующие в регуляции дыхания, деятельности сердца и сосудов. Повреждение этих центров приводит к смерти человека.

Продолговатый мозг не только “большая дорога”, но и “главный коммутатор телефонных связей” между головным и спинным мозгом. На уровне продолговатого мозга некоторые нервные пути перекрещиваются: левые идут к правому полушарию, а правые — к левому. Типичная форма бабочки серого вещества спинного мозга нарушается. Серое вещество имеет вид скоплений тел нервных клеток — ядер.

В продолговатом мозге множество нервных центров. Здесь сосредоточены центры, управляющие кровеносными сосудами (сосудодвигательный), центры регуляции сердцебиения, дыхания, глотания, слюноотделения, чихания, кашля, слезоотделения и др. Это все центры безусловных рефлексов. Здесь же находятся центры, регулирующие положение тела в пространстве. Функции этих центров контролируются высшими отделами головного мозга.

Мост - это место, где располагаются нервные волокна, по которым нервные импульсы идут вверх в кору большого мозга или обратно, вниз – в спинной мозг, к мозжечку, к продолговатому мозгу. Здесь же находятся центры, связанные с мимикой, жевательными функциями.

Средний мозг – участвует в рефлекторной регуляции различного рода движений, возникающих под влиянием зрительных и слуховых импульсов. Например, он обеспечивает изменение величины зрачка, кривизны хрусталика в зависимости от яркости света или поворот головы, глаз в сторону источника света.

Промежуточный мозг проводит импульсы к коре полушарий большого мозга от рецепторов кожи, органов чувств. В его отделах расположены также центры жажды, голода, поддержания постоянства внутренней среды организма. С участием промежуточного мозга осуществляются функции желез внутренней секреции, вегетативной нервной системы.

Мозжечок принимает участие в координации движений, делает их точными, целенаправленными. При повреждении мозжечка движения человека нарушены, ему трудно удержать равновесие, его походка напоминает походку потерявшего ориентацию человека.

Мозжечок получает импульсы от многих рецепторов и обрабатывает их. Благодаря деятельности мозжечка ответная реакция организма происходит с учетом всех внешних факторов. Поражение мозжечка при опьянении:

Закрепление: Почему опьяневший человек, пытаясь сделать один шаг, вынужденно делает по инерции несколько шагов в том же направлении?

Почему нетрезвые водители резко поворачивают машину, резко нажимают на тормозную педаль и к чему это может привести?

Домашнее задание : прочитать текст учебника, устно ответить на вопросы в конце параграфа.

Общие принципы строения нервной системы и её функции. Нейрон как структурная и функциональная единица нервной системы. Синапсы, их строение и значение

Определение понятия

Нервная система - это управляющая система организма, состоящая из контактирующих между собой отросчатых клеток, обеспечивающих работу с информационными сигналами в виде электрохимических потенциалов. Она входит в состав общей управляющей нейроиммунноэндокринной системы. Обеспечивает упреждающее приспособление организма к факторам внешней и внутренней среды с помощью их информационного моделирования и прогнозирования, а также поддержание гомеостаза и согласованную работу (=координацию) органов и отдельных частей организма. Предназначена для обеспечения выживания организма в меняющихся условиях внешней и внутренней среды. © 2012-2021 Сазонов В.Ф. © 2012-2021 kineziolog.su

Главные задачи нервной системы

1. Прогнозирование предстоящих событий (внутри и вне организма) и организация упреждающих реакций на них.

2. Обеспечение гомеостаза.

3. Функциональное объединение частей и органов организма в единое целое.

Решение всех этих задач обеспечивает успешное выживание организма.

Нервная система (НС) играет исключительную интегрирующую роль в жизнедеятельности организма. Эта интеграция идёт по нескольким направлениям:
  1. НС объединяет (интегрирует) отдельные органы и части организма в единое целое.
  2. НС "вписывает" (интегрирует) организм в окружающую среду.

Итак, НС обеспечивает согласовнную работу отдельных частей организма (координацию), поддерживает равновесного состояние и постоянство внутренней среды в организме (гомеостаз) и организует приспособление организма к изменениям внешней и/или внутренней среды (адаптацию).

Самое главное, что делает нервная система

Нервная система обеспечивает взаимосвязь и взаимодействие между организмом и внешней средой. И для этого ей требуется не так уж много процессов.

Основные процессы в нервной системе

1. Трансдукция . Превращение раздражения, внешнего по отношению к самой нервной системе, в нервное возбуждение, которым она может оперировать.

2. Трансформация . Переделка, преобразование входящего потока возбуждения в выходящий поток с отличающимися характеристиками.

3. Распределение . Распределение возбуждения и направление его по разным путям, по разным адресам.

4. Моделирование. Построение нервной модели раздражения и/или раздражителя, которая заменяет сам раздражитель. С этой моделью нервная система может работать, она может её хранить, видоизменять и использовать вместо реального раздражителя. Сенсорный образ - один из вариантов нервных моделей раздражения.

5. Модуляция/пластичность . Нервная система под влиянием раздражения изменяет себя и/или свою деятельность.

Виды модуляции
1. Активация (возбуждение). Повышение активности нервной структуры, повышение её возбуждения и/или возбудимости. Доминантное состояние.
2. Угнетение (торможение, ингибиция). Понижение активности нервной структуры, торможение.
3. Пластическая перестройка нервной структуры.
Варианты пластических перестроек:
1) Сенситизация - улучшение передачи возбуждения.
2) Габитуация - ухудшение передачи возбуждения.
3) Временная нервная связь - создание нового пути передачи возбуждения.

6. Активация исполнительного органа для совершения действия. Таким способом нервная система обеспечивает рефлекторную ответную реакцию на раздражение .

© 2012-2021 Сазонов В.Ф. © 2012-2021 kineziolog.su

Задачи и деятельность нервной системы

1. Произвести рецепцию - уловить изменение во внешней среде или внутренней среде организма в виде раздражения (это осуществляют сенсорные системы с помощью своих сенсорных рецепторов).

Сенсорные рецепторы - это биологические устройства для получения информационных сигналов из внешней и внутренней среды и передачи их в нервную систему для дальнейшего использования. Экстерорецепторы получают сигналы из внешней среды, интерорецепторы - из внутренней среды. Сенсорные рецепторы - это "информационные входные ворота" в нервную систему. Другими способами нервная система не может получать информацию, она получает её только с помощью сенсорных рецепторов.

2. Произвести трансдукцию - преобразование (кодирование) этого раздражения в нервное возбуждение, т.е. поток нервных импульсов с особыми характеристиками, соответствующими раздражению.

3. Осуществить проведение - доставить по нервным путям возбуждение в необходимые участки нервной системы и к исполнительным органам (эффекторам).

4. Произвести перцепцию - создать нервную модель раздражения, т.е. построить его сенсорный образ.

5. Произвести трансформацию - преобразовать сенсорное возбуждение в эффекторное для осуществления ответной реакции на изменение среды.

6. Оценить результаты своей деятельности с помощью обратных связей и обратной афферентации.

Значение нервной системы :
1. Обеспечивает взаимосвязь между органами, системами органов и между отдельными частями организма. Это её координационная функция. Она координирует (согласовывает) работу отдельных органов в единую систему.
2. Обеспечивает взаимодействие организма с окружающей средой.
3. Обеспечивает мыслительные процессы. К этому относится восприятие информации, усвоение информации, анализ, синтез, сравнение с прошлым опытом, формирование мотивации, планирование, постановка цели, коррекция действия при достижении цели (исправление ошибок), оценка результатов деятельности, переработка информации, формирование суждений, заключений выводов и абстрактных (общих) понятий.
4. Осуществляет контроль за состоянием организма и отдельных его частей.
5. Управляет работой организма и его систем.
6. Обеспечивает активацию и поддержание тонуса, т.е. рабочего состояния органов и систем.
7. Поддерживает жизнедеятельности органов и систем. Кроме сигнальной функции нервная система имеет ещё и трофическую функцию, т.е. выделяемые ей биологически активные вещества способствуют жизнедеятельности иннервируемых органов. Органы, лишённые подобной "подпитки" со стороны нервных клеток, атрофируются, т.е. хиреют и могут отмереть.

Строение нервной системы

NervSys

Рис. ↑. Общее строение нервной системы (схема). © 2017 Сазонов В.Ф. © 2017 kineziolog.su.

ЦНС

otdelymozga.jpg

отделы мозга

otdelymozga.jpg

отделы головного мозга

Подробная видеолекция по гистологии центральной нервной системы: Перейти

Видео: Центральная нервная система

Нервная система в функциональном и структурном отношении делится на периферическую и центральную нервную систему (ЦНС).

Центральная нервная система состоит из головного и спинного мозга.

Головной мозг находится внутри мозгового отдела черепа, а спинной мозг - в позвоночном канале.
Периферическая часть нервная система состоит из нервов, т.е. пучков нервных волокон, которые выходят за пределы головного и спинного мозга и направляются к различным органам тела. К ней относят также нервные узлы, или ганглии - скопления нервных клеток вне спинного и головного мозга.
Нервная система функционирует как единое целое.


Функции нервной системы :
1) формирование возбуждения;
2) передача возбуждения;
3) торможение (прекращение возбуждения, уменьшение его интенсивности, угнетение, ограничение распространения возбуждения);
4) интеграция (объединения различных потоков возбуждения и изменения этих потоков);
5) восприятие раздражения из внешней и внутренней среды организма с помощью специальных нервных клеток - рецепторов;

6) кодирование, т.е. преобразование химического, физического раздражения в нервные импульсы;
7) трофическая, или питательная, функция - образование биологически активных веществ (БАВ).

Нейрон - основная структурная и функциональная единица нервной системы.

Нейрон


Определение понятия

Нейрон - основная структурная и функциональная единица нервной системы.

Нейрон - это специализированная отросчатая клетка, способная воспринимать, проводить и передавать нервное возбуждение для обработки информации в нервной системе. © 2016 Сазонов В.Ф. © 2016 kineziolog.su.

Нейрон - это сложно устроенная возбудимая секретирующая высокодифференцированная нервная клетка с отростками, которая воспринимает нервное возбуждение, перерабатывает его и передаёт другим клеткам. Кроме возбуждающего воздействия нейрон может оказывать на свои клетки-мишени также тормозное или модулирующее воздействие.


Функционально нейрон можно рас­сматривать как один из уровней организации нервной системы, который связывает друг с другом сразу несколько других уровней: с одной стороны, молекулярный, синаптический и субклеточный уровни и, с другой стороны, надклеточные уровни: локальных нейронных сетей, нервных центров и крупных фун­кциональных систем мозга, организующих поведение.

Строение нейрона

NeuronStructure

Рис. ↑. Схематичное изображение нейрона. © 2016 Сазонов В.Ф. © 2016 kineziolog.su. Бланодарность за помощь в графике - Макаровой Ирине Сергеевне.


Сложность функции нейрона обусловливает особенности его строения. В нём различают тело клетки (сома), один длинный, маловетвящийся отросток - аксон и несколько коротких ветвящихся отростков - дендритов.
Аксон отличается большой длиной: от нескольких сантиметров до 1-1,5 м. Конец аксона сильно ветвится, так что один аксон может образовывать контакты с многими сотнями клеток.
Дендриты - обычно короткие, сильно ветвящиеся отростки. От одной клетки может отходить от 1 до 1000 дендритов. По дендритам возбуждение распространяется от рецепторов или контактирующих с этими дендритами нейронов к телу клетки, а по аксону нервные импульсы передаются к другим нейронам или к эффекторным (рабочим)клеткам . На дендритах имеются микроскопических размеров выросты (шипики), которые значительно увеличивают поверхность соприкосновения с другими нейронами. Особого развития шипики достигают на клетках больших полушарий головного мозга. На каждом шипике может быть до 8 синапсов (межклеточных контактов).
Тело нейрона в различных отделах нервной системы имеет различную величину и форму. Тело покрыто мембраной и содержит, как и любая клетка, цитоплазму, ядро с одним или несколькими ядрышками, митохондрии, рибосомы, аппарат Гольджи, эндоплазматическую сеть. По отношению к отросткам тело клетки выполняют трофическую функцию, т.е. регулирует в них уровень обмена веществ. Вот почему отделение аксона от тела нервной клетки или гибель сомы приводят к гибели аксона. Но тело нейрона, лишённое аксона, может вырастить вместо него новый аксон. На рисунке слева вокруг крупного нейрона виды мелкие глиальные клетки (G). Это вспомогательные клетки нервной ткани.

Как работает нейрон и что он делает?

Возбуждение, возникшее в виде нервного импульса на каком-либо участке мембраны нейрона, пробегает по всей его мембране и по всем его отросткам: как по аксону, так и по дендритам. Но вот передаётся возбуждение от одной нервной клетки к другой обычно только в одном направлении - с аксона передающего нейрона на воспринимающий нейрон через синапсы, находящиеся на его дендритах, теле или аксоне.

Обратите внимание на то, что одностороннюю передачу возбуждения обеспечивают синапсы (контакты нейронов). Нервное волокно (отросток нейрона) может передавать нервные импульсы в обоих направлениях, а односторонняя передача возбуждения появляется только в нервных цепях, состоящих из нескольких нейронов, соединённых синапсами. Именно синапсы обеспечивают одностороннюю передачу возбуждения.

Нервные клетки воспринимают и перерабатывают поступающую к ним информацию. Эта информация приходит к ним, как правило, вовсе не в виде прямых электрический воздействий, а в виде управляющих химических веществ: нейротрансмиттеров. Она может быть в виде возбуждающих или тормозных химических сигналов, а также в виде модулирующих сигналов, т.е. таких, которые изменяют состояние или работу нейрона, но не передают на него возбуждение.

Свойства нейрона

Процесс в основе

Афферентный нейрон

Вставочный нейрон

Э фферентный нейрон

Восприятие возбуждения

Локальный потенциал

Проведение возбуждения

Нервный импульс

Передача возбуждения

Химический выброс

Пластичность синапсов

Изменение силы синапсов

Таблица. Основные свойства нейронов. © 2016 Сазонов В.Ф. © 2016 kineziolog.su.

Более подробно смотрите здесь: 3_1 Работа нервных клеток

Синапсы - там даётся определение синапса.
Аксоны (выносящие возбуждение отростки) у большинства нейронов подходя к другим нервным клеткам ветвятся и образуют многочисленные окончания на этих клетках и их отростках (дендритах и аксонах). Такие места контактов называют синапсами. Аксоны также образуют синаптические окончания и на мышечных волокнах, и на клетках желёз. А аксоны нейронов гипоталамуса могут образовывать контакты также на кровеносных капиллярах, для того чтобы выделять свои химические управляющие вещества (нейротрансмиттеры) в кровь.

Строение синапса



Синапс имеет сложное строение. Так как его образуют две разные клетки, то в его состав входят две мембраны - пресинаптическая (от передающего возбуждение нейрона) и постсинаптическая (от воспринимающего возбуждение нейрона). Между ними есть синаптическая щель с межклеточной жидкостью. Пресинаптическая часть синапса принадлежит аксону. Её можно отличить от постсинаптической части синапса по наличию пузырьков-везикул, заполненных нейротрансмиттером - химическим управляющим веществом, влияющим на постсинаптическое окончание. Постсинаптическая часть синапса отличается уплотнённой постсинаптической мембраной, которую иногда называют также "субсинаптической мембраной". На ней расположены молекулярные рецепторы, с которыми соединяется нейротрансмиттер, выделяющийся из пресинаптического окончания. Нервные окончания в ЦНС имеют вид пуговок или бляшек. Постсинаптическая мембрана находится на теле или дендритах нейрона, на который передаётся нервный импульс. Но существуют также и "аксо-аксональные синапсы", образованные двумя аксонами.

Работа возбуждающего синапса

Работу возбуждающего синапса можно объяснить очень кратко.

Когда нервный импульс доходит до места соединения одного нейрона с другим, то передающий нейрон выбрасывает в пространство между их примыкающими отростками молекулы нейромедиатора. Этот нейромедиатор улавливается окончанием воспринимающего нейрона, после чего воспринимающий нейрон порождает (генерирует) уже свой нервный импульс и отправляет его дальше по цепи нейронов.

Если вы кликните на замечательную картинку синапса слева, то увидите в динамике, как химическим путём передаётся возбуждение (или наводится торможение) с одного нейрона на другой. Слева - аксон передающего нейрона образует пресинаптическое окончание. Справа - дендрит воспринимающего нейрона образует постсинаптическое окончание.

Бегущая в виде колечка волна возбуждения (она же - нервный импульс, она же - деполяризация) открывает на своём пути натриевые ионные каналы. Ионы Na+ входят в клетку и обеспечивают деполяризацию следующего участка на пути движения волны возбуждения. Так волна мембранных изменений продвигается вдоль аксона к его окончанию (пресинаптическому окончанию).

Но на пресинаптическом окончании открываются уже другие ионные каналы - кальциевые.

Это очень важно понять и запомнить: на пресинаптическом окончании открываются не только натриевые каналы, но и кальциевые!

В наш рисунок необходимо внести уточнение: последние исследования показали, что кальциевые каналы расположены на самой верхушке пресинаптического окончания - именно там, где будут сливаться с мембраной синаптические пузырьки, а не сбоку, как это показано на рисунке. Через раскрывшиеся кальциевые каналы более крупные ионы Ca2+ входят в это окончание и побуждают пузырьки с нейротрансмиттером переместиться к синаптической щели и выбросить в неё своё содержимое. Выброшенный из окончания наружу нейротрансмиттер (медиатор или модулятор) движется через щель к постсинаптическому окончанию и садится там на его молекулярные рецепторы.

Работа тормозного синапса

Тормозный синапс на своей постсинаптической мембране имеет рецепторы к тормозному медиатору - гамма-аминомасляной кислоте (ГАМК или GABA). В отличие от возбуждающего синапса в тормозном синапсе на постсинаптической мембране ГАМК открывает ионные каналы не для натрия, а для хлора. Ионы хлора приносят в клетку не положительный заряд, а отрицательный, поэтому противодействуют взбуждению, т.к. нейтрализуют положительные заряды ионов натрия, возбуждающих клетку.

Видео: Работа ГАМК-рецептора и тормозного синапса

Итак, возбуждение через синапсы передаётся химическим путём с помощью особых управляющих веществ, находящихся в синаптических пузырьках, расположенных в пресинаптической бляшке . Общее название этих веществ - нейротрансмиттеры, т.е. "нейропередатчики". Их разделяют на медиаторы ( посредники), которые передают возбуждение или торможение, и модуляторы, которые изменяют состояние постсинаптического нейрона, но возбуждение или торможение сами не передают.

Читайте также: