Какая из стран использует геотермальную энергию для полного обеспечения собственных потребностей

Обновлено: 30.06.2024

Хозяйственное применение геотермальных источников распространено в Исландии и Новой Зеландии, Италии и Франции, Литве, Мексике, Никарагуа, Коста-Рике, Филиппинах, Индонезии, Китае, Японии, Кении и Таджикистане.

Где и как используется геотермальная энергия?

Основным источником этой энергии служит постоянный поток теплоты из раскаленных недр, направленный к поверхности Земли. . Геотермальная энергия в ряде стран (Венгрии, Исландии, Италии, Мексики, Новой Зеландии, России, США, Японии) широко используется для теплоснабжения, выработки электроэнергии.

Как можно использовать геотермальную энергию?

Существует два основных способа использования геотермальной энергии: прямое использование тепла и производство электроэнергии. Прямое использование тепла является наиболее простым и поэтому наиболее распространенным способом.

Какая из стран используют геотермальную энергию для полного обеспечения собственных потребностей?

На сегодняшний день мировыми лидерами в геотермальной электроэнергетике являются США, Филиппины, Мексика, Индонезия, Италия, Япония, Новая Зеландия и Исландия. Особенно ярким примером использования геотермальной энергии служит последнее государство.

Какая страна занимает первое место в мире по выработке электроэнергии используя геотермальные электростанции?

Лидером по геотермальной выработке является США со своими 3591 МВт. Впечатляющее значение, которое, однако, составляет всего 0,3% от общей выработки страны. Далее идет Индонезия с 1948 МВт и 3,7%.

Какая страна имеет самую высокую обеспеченность геотермальной энергией?

Крупнейшим производителем геотермальной электроэнергии являются США, которые в 2005 году произвели около 16 млрд кВт·ч возобновляемой электроэнергии.

Где используется энергия горячих источников?

В геотермальной энергетике могут быть использованы практически все виды термальных вод: перегретые воды – при добыче электроэнергии, пресные термальные воды – в коммунальном теплообеспечении, солоноватые воды – в бальнеологических целях, рассолы – как промышленное сырье.

Как используется энергия гейзеров?

Геотерма́льная электроста́нция (ГеоЭС или ГеоТЭС) — вид электростанций, которые вырабатывают электрическую энергию из тепловой энергии подземных источников (например, гейзеров). . Такое тепло может использоваться как непосредственно для обогрева домов и зданий, так и для производства электроэнергии.

Каким образом можно использовать энергию волн?

Эне́ргия волн океана — энергия, переносимая волнами на поверхности океана. Может использоваться для совершения полезной работы — генерации электроэнергии, опреснения воды и перекачки воды в резервуары. Энергия волн — неисчерпаемый источник энергии. Мощность волнения оценивают в кВт на погонный метр, то есть в кВт/м.

Как работают геотермальная энергия?

Геотермальная электростанция вырабатывает электроэнергию из тепловой энергии горячих подземных источников, например, гейзеров. Добраться до этого тепла можно, пробурив скважину. На поверхность земли тепло подземных источников доставляется в виде пара или горячей воды.

Какую энергию использует мутновская электростанция?

Основное генерирующее оборудование Мутновской ГеоЭС включает в себя два турбоагрегата мощностью по 25 МВт, каждый из которых состоит из паровой турбины К-25-0,6 Гео и генератора Т-25-2УЗ.

Как люди используют тепловую энергию недр Земли ответ?

Поэтому тепло в недрах земли сохраняется даже в зимнее время и это тепло можно использовать для обогрева зданий. Для этого потребуется сделать скважину и приобрести специальный тепловой насос. Тепловой насос, установленный в доме, преобразует энергию грунта, воды, а также воздуха в тепло, которым и отапливается дом.

В каком субъекте РФ находится геотермальная электростанция?

В России действуют три геотермальные электростанции. Все они расположены на Камчатке. Это, построенная в 1967 году Паужетская ГеоЭС, Верхне-Мутновская ГеоЭС и, считающаяся одной из самых современных в мире, Мутновская ГеоЭС.

Где вырабатывается наибольшая доля электроэнергии?

Наибольшая доля выработки электроэнергии в России по-прежнему приходится на ТЭЦ Доля электричества, приходящаяся на теплоэлектроцентрали, в общем объеме электроэнергии, произведенной российскими электростанциями в 2017 году, составила почти 40%.

Какое место занимает Россия в мировом производстве электроэнергии?

Список стран по производству электроэнергии

Страна2018
1Китай7166,1
2США (подробнее)4457,4
3Индия1551,4
4Россия (подробнее)1109,2

Какую природную силу использует электростанция для выработки электричества?

Гидроэлектростанция (ГЭС) — электростанция, в качестве источника энергии использующая энергию водного потока. Гидроэлектростанция (ГЭС) - электростанция, в качестве источника энергии использующая энергию водного потока. Гидроэлектростанции обычно строят на реках, сооружая плотины и водохранилища.

Данная энергия относится к альтернативным источникам. В наши дни всё чаще упоминают о возможностях получения ресурсов, которые дарит нам планета. Можно сказать, что мы живем в эпоху моды на возобновляемую энергетику. Создается множество технических решений, планов, теорий в данной области.

Он находится глубоко в земляных недрах и имеет свойства возобновления, другими словами он бесконечный. Классические ресурсы, по данным учёных начинают заканчиваться, иссякнет нефть, уголь, газ.


Несьявеллир ГеоТЭС, Исландия

Поэтому можно постепенно готовиться принимать на вооружение новые альтернативные методы добычи энергии. Под земной корой находится мощное ядро. Его температура составляет от 3000 до 6000 градусов. Перемещение литосферных плит демонстрирует его огромнейшую силу. Она проявляется в виде вулканического выплескивания магмы. В недрах происходит радиоактивный распад, побуждающий иногда к таким природным катаклизмам.


Обычно магма нагревает поверхность не выходя за её пределы. Так получаются гейзеры или теплые бассейны воды. Таким образом, можно использовать физические процессы в нужных целях для человечества.

Виды источников геотермальной энергии

Её принято разделять на два вида: гидротермальную и петротермальную энергию. Первый образуется за счет теплых источников, а второй тип – это разница температур на поверхности и в глубине земли. Объясняя своими словами, гидротермальный источник состоит из пара и горячей воды, а петротермальный спрятан глубоко под грунтом.


Карта потенциала развития геотермальной энергетики в мире

Для петротермальной энергии необходимо пробурить две скважины, одну наполнить водой, после чего произойдет процесс парения, который выйдет на поверхность. Существует три класса геотермальных районов:

  • Геотермальный – расположен вблизи континентальных плит. Градиент температуры более 80С/км. В качестве примера, итальянская коммуна Лардерелло. Там размещена электростанция
  • Полутермальный – температура 40 – 80 С/км. Это естественные водоносные пласты, состоящие из раздробленных пород. В некоторых местах Франции обогреваются таким способом здания
  • Нормальный – градиент менее 40 С/км. Представительство таких районов наиболее распространено


Они являются отличным источником для потребления. Они находятся в горной породе, на определенной глубине. Более подробно рассмотрим классификацию:

  • Эпитермальные – температура от 50 до 90 с
  • Мезотермальные – 100 – 120 с
  • Гипотермальные – более 200 с

Данные виды состоят из разного химического состава. В зависимости от него, можно использовать воды для различных целей. Например, в производстве электроэнергии, теплообеспечении (тепловые трассы), сырьевой базе.

Видео: Геотермальная энергия

Процесс теплоснабжения

Температура воды 50 -60 градусов, является оптимальной для отопления и горячего снабжения жилого массива. Нужда в отопительных системах зависит от географического расположения и климатических условий. А в потребностях ГВС люди нуждаются постоянно. Для этого процесса сооружаются ГТС (геотермальные тепловые станции).



Главное отличие в том, что нет необходимости использовать топливный котлоагрегат. Это существенно снижает себестоимость тепловой энергии. Зимой абоненты получают тепло и горячее водоснабжение, а летом только ГВС.

Производство электроэнергии

Горячие источники, гейзеры служат основным компонентами в производстве электричества. Для этого применяется несколько схем, сооружаются специальные электростанции. Устройство ГТС:

  • Бак ГВС
  • Насос
  • Газоотделитель
  • Паросепаратор
  • Генерирующая турбина
  • Конденсатор
  • Повысительный насос
  • Бак – охладитель



Как видим основным элементом схемы, является паровой преобразователь. Это позволяет получать очищенный пар, так как в нем содержатся кислоты, разрушающие оборудование турбин. Существует возможность применение смешанной схемы в технологическом цикле, то есть вода и пар участвуют в процессе. Жидкость проходит всю стадию очистки от газов, так же как и пар.

Схема с бинарным источником

Рабочим компонентом является жидкость с низкой температурой кипения. Термальная вода также участвует в производстве электроэнергии и служит второстепенным сырьем.


С её помощью образуется пар низкокипящего источника. ГТС с таким циклом работы могут быть полностью автоматизированы и не требовать наличия обслуживающего персонала. Более мощные станции используют двухконтурную схему. Такой вид электростанций позволяет выходить на мощность 10 МВт. Двухконтурная структура:

  • Паровой генератор
  • Турбина
  • Конденсатор
  • Эжектор
  • Питательный насос
  • Экономайзер
  • Испаритель

Практическое применение

Огромные запасы источников во много раз превосходят ежегодное потребление энергии. Но лишь малая доля используется человечеством. Строительство станций датировано 1916 годом. В Италии была создана первая ГеоТЭС мощностью 7,5 МВт. Отрасль активно развивается в таких странах как: США, Исландия, Япония, Филиппины, Италия.

Ведутся активные изучение потенциальных мест и более удобные методы добывания. Из года в год растёт производственная мощность. Если брать в расчёт экономический показатель, то себестоимость такой отрасли равна угольным ТЭС. Исландия практически полностью покрывает коммунально-жилой фонд ГТ-источником. 80 % домов для отопления используют горячую воду из скважин. Эксперты из США утверждают, что при должном развитии ГеоТЭС могут произвести в 30 раз больше ежегодного потребления. Если говорить о потенциале, то 39 стран мира смогут полностью себя обеспечить электроэнергией, если на 100 процентов используют недра земли.

Находится на глубине 4 км:





Япония расположена в уникальной географической местности, связанной с движением магмы. Постоянно происходят землетрясения и извержения вулканов. Обладая такими природными процессами, правительство внедряет различные разработки. Создано 21 объект с общей производительностью 540 Мвт. Проводятся эксперименты по извлечению тепла из вулканов.

Плюсы и минусы ГЭ

Как говорилось ранее, ГЭ используется в различных сферах. Существуют определенные достоинства и недостатки. Поговорим о достоинствах:

  • Бесконечность ресурсов
  • Независимость от погоды, климата и времени
  • Многогранность применения
  • Экологически безопасна
  • Низкая себестоимость
  • Обеспечивает энергонезависимость государству
  • Компактность оборудования станций


Первый фактор самый основной, побуждает изучать такую отрасль, поскольку альтернатива нефти достаточно актуальна. Отрицательные изменения на нефтяном рынке усугубляют глобальный экономический кризис. При работе установок не загрязняется внешняя среда, в отличие от других. Да и сам по себе цикл не требует зависимости от ресурсов и его транспортировки к ГТС. Комплекс сам себя обеспечивает и не зависит от других. Это огромный плюс для стран с низким уровнем полезных ископаемых. Безусловно, бывают негативные моменты, ознакомимся с ними:

  • Дороговизна разработок и строительство станций
  • Химический состав требует утилизации. Её нужно сливать обратно в недра или океан
  • Выбросы сероводорода

Выбросы вредных газов очень незначительны и не сопоставимы с другими производствами. Оборудование позволяет эффективно удалять его. Отходы сбрасываются в землю, где оборудованы колодцы специальными цементными каркасами. Такая методика позволяет исключить возможность загрязнения грунтовых вод. Дорогие разработки имеют тенденцию к уменьшению, так как прогрессирует их усовершенствование. Все недостатки тщательно изучаются, ведется работа по их устранению.

Дальнейший потенциал

Наработанный базис знаний и практики становится фундаментом для будущих достижений. Пока рано говорить о полном замещении традиционных запасов, поскольку не до конца изучены термальные зоны и методы добычи энергоресурсов. Для более быстрого развития требуется больше внимания, финансовых инвестиций.


Пока общество знакомится с возможностями, медленно двигается вперед. По экспертным оценкам лишь 1 % мировой электроэнергии добывается данным фондом. Возможно, будут разработаны комплексные программы развития отрасли на глобальном уровне, проработаны механизмы и средства достижения целей. Энергия недр способна решить экологическую проблему, ведь с каждым годом вредных выбросов в атмосферу становится больше, загрязняются океаны, оказывается тоньше озоновый слой. Для быстрого и динамичного развития отрасли нужно убрать основные препятствия, тогда она во многих странах станет стратегическим плацдармом, способным диктовать условия на рынке и поднимет уровень конкурентоспособности.

Читайте также: