Как организма животного и растительного мира осуществляет терморегуляцию

Обновлено: 25.06.2024

А.С. Степановских
Экология. Учебник для вузов
М.: ЮНИТИ-ДАНА, 2001. — 703 с.

4.2. Температура

Тепловой режим — важнейшее условие существования живых организмов, так как все физиологические процессы в них возможны при определенных условиях. Главным источником тепла является солнечное излучение.

Солнечная радиация превращается в экзогенный, находящийся вне организма, источник тепла во всех случаях, когда она падает на организм и им поглощается. Сила и характер воздействия солнечного излучения зависят от географического положения и являются важными факторами, определяющими климат региона. Климат же определяет наличие и обилие видов растений и животных в данной местности. Диапазон существующих во Вселенной температур равен тысячам градусов (табл. 4.3).

Состав атмосферы и температура на планетах

Содержание газов

в атмосфере, %

По сравнению с ними пределы, в которых может существовать жизнь, очень узки — около 300°С, от -200°С до +100°С. На самом деле большинство видов и большая часть активности приурочены к более узкому диапазону температур (табл. 4.4).

Температурный диапазон активной жизни на Земле, °С

Среда жизни

Как правило, эти температуры, при которых возможно нормальное строение и функционирование белков: от 0 до +50°С. Однако целый ряд организмов обладает специализированными ферментными системами и приспособлен к активному существованию при температуре тела, выходящей за названные выше пределы.

Температурный фактор характеризуется ярко выраженными как сезонными, так и суточными колебаниями. В ряде районов Земли это действие фактора имеет важное сигнальное значение в регуляции сроков активности организмов, обеспечении их суточного и сезонного режимов жизни.

При характеристике температурного фактора очень важно учитывать его крайние показатели, продолжительность их действия, повторяемость. Выходящие за пределы терпимости организмов изменения температуры в местах обитания приводят к массовой их гибели. Значение температуры заключается и в том, что она изменяет скорость протекания физико-химических процессов в клетках, отражающихся на всей жизнедеятельности организмов. Температура влияет на анатомо-морфологические особенности организмов, ход физиологических процессов, их рост, развитие, поведение и во многих случаях определяет географическое распространение растений и животных.

Как к экологическому фактору, по отношению к температуре все организмы подразделяются на две группы: холодолюбивые и теплолюбивые. Холодолюбивые организмы, или криофилы, способны жить в условиях сравнительно низких температур и не выносят высоких. Криофилы могут сохранять активность при температуре клеток до -8 и -10 °С, когда жидкости их тела находятся в переохлажденном виде. Характерно для представителей разных групп, например бактерий, грибов, моллюсков, членистоногих, червей и др. Криофилы населяют холодные и умеренные зоны. Холодостойкость растений весьма различна и зависит от условий, в которых они обитают.

Так, древесные и кустарниковые породы Якутии не вымерзают при -70°С, в Антарктиде при такой же температуре обитают лишайники, отдельные виды водорослей, ногохвостки, пингвины. В лабораторных экспериментах семена, споры и пыльца растений, коловратки, нематоды, цисты простейших после обезвоживания переносят температуры, близкие к абсолютному нулю, т.е. до -271,16 °С, возвращаясь после этого к активной жизни. Приостановка всех жизненных процессов организма называется анабиозом. Из анабиоза живые организмы возвращаются к нормальной жизни при условии, если не была нарушена структура макромолекул в их клетках.

У теплолюбивых, или термофилов, жизнедеятельность приурочена к условиям довольно высоких температур (табл. 4.5).

Это преимущественно обитатели жарких, тропических районов Земли. Среди многочисленных беспозвоночных (насекомые, паукообразные, моллюски, черви), холодно- и теплокровных позвоночных имеется много видов и целый отряд, обитающие исключительно в тропиках. Настоящими термофилами являются растения жарких тропических районов. Они не переносят низких температур и нередко гибнут уже при 0 °С, хотя физического замораживания их тканей и не происходит. Причинами гибели здесь обычно называют нарушение обмена веществ, подавление физиологических процессов, что приводит к образованию в растениях не свойственных им продуктов, в том числе и вредных, вызывающих отравление.

Примеры видов, обладающих различной

устойчивостью к температуре

Стенотермные теплолюбивые

Стенотермные холодолюбивые

Рачок Thermosbaena mirabilis живет при температуре 45-48°С и погибает, если температура падает ниже 30°С

Насекомые-эктопаразиты млекопитающих и птиц зависят от температуры тела животных

Ногохвостки, долгоножки активны при температуре ниже 0°С и вплоть до -10°С

Двукрылые активны при температуре между 5 и 10°С в солнечные часы дня.

Эти виды очень чувствительны к повышению температуры

Животные — обитатели больших глубин способны переносить температуры, близкие к 0°С

Многие организмы обладают способностью переносить очень высокие температуры. Например, некоторые виды жуков и бабочек, пресмыкающие выдерживают температуру до 45—50 °С. В горячих источниках Калифорнии при температуре 52 °С обитает рыбка пятнистой ципринодон, в водах горячих ключей на Камчатке постоянно живут сине-зеленые водоросли при температуре 75—80 °С, верблюжья колючка переносит нагревание воздуха до 70 °С. Таким образом, общие закономерности воздействия температуры на живые организмы проявляются в их способности существовать в определенном диапазоне температуры. Этот диапазон ограничен нижней летальной (смертельной) и верхней летальной температурой.

Температура, наиболее благоприятная для жизнедеятельности и роста, называется оптимальной (табл. 4.6).

Оптимальные температуры для выращивания растений

Температурный оптимум большинства живых организмов находится в пределах 20—25 С, и лишь у обитателей жарких, сухих районов температурный оптимум жизнедеятельности находится несколько выше 25—28°С. Например, некоторые прямокрылые (кузнечики) проявляют полуденную активность в условиях пустыней Палестины при температуре 40°С и выше.

Для организмов умеренных и холодных зон России оптимальные температуры от 10 до 20°С. Так, у ветреницы дубравной процесс фотосинтеза наиболее интенсивно протекает при 10°С.

В зависимости от ширины интервала температуры, в которой данный вид может существовать, организмы делятся на эвритермные и стенотермные. Эвритермные организмы выдерживают широкие колебания температуры, стенотермные живут лишь в узких пределах.

К эвритермным относится большинство организмов районов с континентальным климатом. Многие из них имеют покоящие стадии, переносящие особенно широкий диапазон температуры (покоящиеся яйца, цисты, куколки насекомых, находящиеся в состоянии анабиоза, взрослые животные, споры бактерий, семена растений).

Беспозвоночные, рыбы, амфибии и рептилии лишены способности поддерживать температуру тела в узких границах. Их называют пойкилотермными (от греч. poikilos — разный). Данных животных часто называют также эктотермными, так как они больше зависят от тепла, поступающего извне, чем от того тепла, которое образуется в обменных процессах. Характерна низкая интенсивность обмена и отсутствие механизма сохранения тепла. Раньше этих животных обычно называли холодокровными, но этот термин неточен и может вводить в заблуждение.

Птицы и млекопитающие способны поддерживать достаточно постоянную температуру тела независимо от окружающей температуры. Этих животных называют гомойотермными (от греч. homoios — подобный) или, по старой терминологии, что менее правильно, теплокровными. Гомойотермные животные относительно мало зависят от внешних источников тепла. Благодаря высокой интенсивности обмена у них вырабатывается достаточное количество тепла, которое может сохраняться. Поскольку эти животные существуют за счет внутренних источников тепла, их называют в настоящее время чаще эндотермными.

Растения и животные в ходе длительного эволюционного развития, приспосабливаясь к периодическим изменениям температурных условий, выработали в себе различную потребность к теплу в разные периоды жизни. Например, прорастание семян растений происходит при более низких температурах, чем последующий их рост. Семена пшеницы, овса, ячменя прорастают при 1—2°С, всходы же появляются при 4—5^0. В период цветения растениям, как правило, необходимо больше тепла, чем в период созревания семян, плодов. Томаты лучше растут и развиваются, когда температура днем 25—26 °С, ночью 17—18°С. Температурный оптимум живых организмов зависит и от других экологических факторов. Установлено, что при полном освещении и избытке углекислого газа в воздухе оптимальная температура фотосинтеза 30 °С, а при слабом освещении и недостатке углекислого газа она снижается до 10°С (рис. 4.8).

При характеристике температуры необходимо различать температуру воздуха и температуру почвы, разность между ними. Для растений это особенно важно, так как они способны поглощать питательные вещества из почвы при условии, если температура почвы будет на несколько градусов ниже температуры воздуха. Например, гречиха достигает наилучшего развития, когда температура близ корней равнг. 10°С, а у надземных частей 22°С. При температуре почвы и воздуха 22°С состояние растений резко ухудшается, и они не дают цветков. При дальнейшем повышении температуры почвы до 34°С, когда надземные органы остаются при 22°С, у растений наблюдается отмирание верхушек почек, стеблей, а впоследствии погибает все растение.

Рис. 4.8. Соотношение между фотосинтезом и дыханием

в зависимости от температур

При оптимальных температурах у всех организмов физиологические процессы протекают наиболее интенсивно, что способствует увеличению темпов их роста. Здесь к биологическим процессам вполне приемлемо правило Вант-Гоффа (Т.А. Акимова, В.В. Хаскин, 1998).

Так, если скорость Vт реакции измерена при двух температурах Т1 и Т2, причем Т1

Читайте также: