Как обеспечить переход переменного тока через нуль

Обновлено: 14.05.2024

Из этой статьи мы знаем, что тиристоры открываются импульсом тока, а для их закрытия нужно прекратить ток или приложить между анодом и катодом обратное напряжение. Кроме этого, нам известно, что тиристоры проводят ток в одном направлении, от анода к катоду, а управляющий сигнал должен быть положительным, относительно катода. То есть его полярность должна совпадать с полярностью приложенного к аноду напряжения. А также потенциал анода в момент открытия должен превышать потенциал катода. Симисторы работают точно так же, а состоят из двух тиристоров, соединённых встречно-параллельно (чуть позже мы разберём примеры).

В этой статье мы подробнее рассмотрим вопросы, связанные со способами и схемами управления тиристорами и симисторами.

Немного теории

Управлять тиристором не так просто как, например, mosfet’ами или IGBT-транзисторами, так как нужно учитывать ряд параметров и выполнять некоторые условия.

Начнём с понятия ток отпирания (он же ток управления, в англоязычных даташитах обозначается, как IGT) — это ток такой силы, который необходимо подать на управляющий электрод (УЭ), чтобы тиристор открылся в нормальном ключевом режиме. Обычно он находится в диапазоне от 0.1 до 1А. На мощных тиристорах, рассчитанных на тысячи ампер, он может быть и больше, но такое встречается редко.

Но даже если подать нужный ток на управляющий электрод тиристор не откроется, потому что по силовой цепи (анод-катод), должен протекать какой-то ток. Этот ток называется током удержания (Iуд в отечественных справочниках или IH в англоязычных даташитах). Это минимальный ток, который должен протекать через тиристор в момент открытия, а также для удержания в открытом состоянии в процессе работы. Обычно он находится в диапазоне от десятков миллиампер до сотен миллиампер (0.05…0.5А).

Ток удержания нужно учитывать не только при отпирании транзистора, но и при его запирании. Если ток в силовой цепи слишком маленький, то если тиристор был включён, а нагрузка по какой-то причине исчезла, то он закроется не полностью и перейдёт в активный режим. На ключе увеличится падение напряжения и выделяемая мощность, если в таком состоянии внезапно появится нагрузка, то он выйдет из строя. Поэтому в схемах с мощными тиристорами используются дополнительные решения для их защиты — отслеживания и контролирования этого тока.

Следующее важное условие сформировать нужную скорость роста тока управления — это обозначается, как dIG/dt , может отличаться для каждого конкретного тиристора, но в среднем оно должно быть больше, чем 2А/мкс.


Для чего это нужно? Допустим, у нас есть какой-то мощный тиристор, если подать на его управляющий электрод ток, который нарастает медленно или вовсе представляет собой стабильную ровную линию, то тиристор будет открываться медленнее, чем нужно. При этом начнёт протекать ток нагрузки, и, так как структура тиристора ещё не открылась полностью, область около УЭ начнёт греться, что может привести к её прожигу и прибор выйдет из строя.

Обозначение dI/dt похоже на предыдущее и можно запутаться. Обратите внимание, в предыдущем случае мы писали dI G /dt, где IG – ток управляющего электрода (G – gate), суть в том, что эти два вопроса тесно связаны между собой, и в сущности, описывают одно и то же явление, но с разных сторон.

Ну и наконец, нужно помнить, что, чтобы закрыть тиристор нужно прекратить ток через него. Это может сыграть и негативную роль, например, если у нагрузки не постоянный характер, и ток в ней может изменяться в процессе работы, то если он опустится ниже, чем ток удержания — тиристор может закрыться и отключить её. Это негативное явление, и в таких случаях нужно контролировать ток нагрузки и следить, чтобы транзистор не закрывался самопроизвольно. Такая коммутация называется естественной.

А чтобы повысить надёжность запирания в те моменты, когда это необходимо, то можно подать на него обратное напряжение — на катод условный плюс, а на анод условный минус. Такая коммутация называется искусственной.

Из этого следует, что тиристор можно использовать в цепи переменного тока, а в цепи постоянного тока он закрываться не будет. Для работы при постоянном токе используют транзисторы.

Безусловно, есть простые схемы регуляторов, где тиристоры подключаются на выход выпрямительного моста, но в этих схемах никогда не используется фильтров, и токи, с которыми работают такие схемы, обычно не превышают и десятка ампер. Поэтому тиристор успевает закрыться в момент, когда напряжение на нём равно нулю, то есть между полупериодами, такой пример мы рассмотрим далее.

Перейдём к практике

Выделяют такие способы управления тиристорами:

  1. Прямой, без гальванической развязки между силовой цепью и цепями управления.
  2. Оптический.
  3. Трансформаторный.
  4. С помощью источника тока.

Важно запомнить, что к полярности управляющего сигнала есть определённые требования: тиристору требуется положительное управляющее напряжение, приложенное относительно катода, а для симистора (симметричного тиристора) —сигнал управления должен быть таким же по полярности, как и в момент открытия на аноде (см. рисунок ниже).

Управление без гальванической развязки

Схема подключается в разрыв между нагрузкой и переменным сетевым напряжением. На тиристор подаётся выпрямленное пульсирующее напряжение. Включение происходит, когда на аноде тиристора есть какое-то напряжение, и нагрузка обеспечивает ток выше величины удержания.

Управление происходит путём подключения источника постоянного тока к управляющему электроду. Ток управления ограничивается резистором R1, R2 – шунтирует УЭ подтягивая его к минусу питания, когда SA1 разомкнут. Когда ключ SA1 замыкается, тиристор включается и через нагрузку начинает протекать ток.

В качестве ключа может быть использован транзистор, и управляться он может от микроконтроллера или миниатюрное реле.

У этой схемы есть масса недостатков:

• Тиристор может включиться в любой момент, если это произойдёт, когда на аноде высокое напряжение (оно здесь может достигать 310В), то будет всплеск тока и помехи.

• Даже если импульс управления подать точно перед началом нарастания напряжения от нуля, то ток нагрузки в этот момент может не достичь тока удержания тогда тиристор закроется сразу же после окончания импульса.

• Если такую схему использовать с транзистором и микроконтроллером, как упоминалось выше, то в случае, когда тиристор пробьёт из-за перенапряжения или он сгорит от перегрузки, то сетевой напряжение попадёт на управляющий транзистор. Если его переход тоже пробьёт, то высокое напряжение попадёт на выход микроконтроллера, и он выйдет из строя.

На практике сложно встретить такую схему как показана на рисунке ниже, значительно более распространён следующий вариант схемы управления без гальванической развязки.

Здесь к выходу диодного моста подключён и сам тиристор и цепь управления им. Управляющий электрод подключается к тому же источнику, что и анод тиристора. В целом схема работает аналогично предыдущей:

Закрывается он естественным образом, когда напряжение и ток снижается до нуля (между выпрямленными полуволнами). Для повышения стабильности работы УЭ подтянут к минусу питания через резистор R2.

Недостатки такие же.

Кстати, такую конструкцию можно уменьшить, если убрать диодный мост, а вместо тиристора использовать симистор.

Здесь также симистор подключается в разрыв между нагрузкой и источником питания, но уже не к выпрямленному, а к переменному напряжению. Как вы помните, на УЭ симистора подают напряжение и ток той же полярности что и на условном аноде . Так как УЭ подключён к тому же источнику питания, то и полярность управляющего напряжения совпадает и симистор будет нормально открываться.

Примечание: так как симистор – это два встречно параллельных тиристора, то у него и нет чёткого анода или катода. Анод всегда там, где приложен больший потенциал.

Закрываться симистор будет при переходе синусоиды через ноль, то есть на каждой половине периода. Чтобы это лучше понять вспомните, что симистор – это два тиристора соединённых встречно-параллельно. Когда синусоида проходит через ноль и к аноду открытого тиристора, пусть это будет VS1, прикладывается обратное напряжение, он закрывается, а ко второму тиристору (VS2) приложится прямое напряжение. Дальше всё повторяется, но с обратной полярностью, и так по кругу.

Давайте разберём эту схему по составляющим и её принцип работы.

Схему можно разделить на 2 части: силовую (симистор BT136) и управление (всё остальное)

Примечание: динистор, он же диодный тиристор по устройству такой же, как тиристор, но без управляющего электрода, он открывается сам, когда на аноде напряжение достигает какой-то пороговой величины — напряжения пробоя.

Элементы R3 и C3 необязательны в этой схеме, но они нужны для повышения стабильности работы.

Демпферная цепочка, состоящая из конденсатора C1 и резистора R4 защищает симистор BT136 от всплесков ЭДС-самоиндукции, если схема подключена в цепь с индуктивной нагрузкой, например, при регулировке оборотов электродвигателей, поэтому в дешёвых светорегуляторах её также может не быть.

Теперь о принципе работы:

Когда схема подключается к сети, начинают заряжаться C2 и C3 через цепочку резисторов R1, R2 и потенциометра. Когда на обкладках C2 и C3 напряжение достигнет величины в диапазоне от 28 до 36 вольт, то динистор DB3 откроется и подаст управляющий импульс на УЭ симистора. Последний откроется и через него начнёт протекать ток нагрузки.

Так как напряжение синусоидальное, ток нагрузки изменяется по такому же закону, когда напряжение приблизится к 0, а ток нагрузки станет меньше тока удержания, симистор закроется и отключит нагрузку.

Такой процесс повторяется каждую полуволну синусоиды, с отличием лишь в полярности напряжения на всех элементах. Продублируем иллюстрацию работы симистора, которую мы приводили ранее.

Как вы можете видеть симистор закрывается каждый раз, при переходе синусоиды проходит через ноль, и открывается при появлении напряжения на управляющем электроде.

И как же всё-таки регулирует мощность эта схема? Как мы уже разобрались выше – тиристор открывается, когда достигается определённое напряжение для открытия динистора DB3, который даёт импульс на управляющий электрод. Так как времязадающая цепь подключена к тому же источнику питания, что и силовая, то напряжение нагрузки априори синхронизировано с управляющей цепью.

Время, за которое достигается напряжение открытия DB3 задаётся RC цепочкой. Если в ней увеличить сопротивление R, то конденсатор C будет заряжаться дольше, соответственно нужное для открытия напряжение на нём появится позже.

На рассматриваемой схеме за регулировку времени открытия отвечает потенциометр R2. Изменяя его сопротивление, мы задаём время заряда и выбираем момент открытия симистора. Время от точки перехода синусоиды через ноль до момента включения тиристора измеряется в градусах и называется углом альфа, реже — углом среза фазы.

Эпюры напряжений на нагрузке в разных положениях регулятора

Из эпюр мы видим, что симистор открывается только на небольшом кусочке синусоиды, поэтому уменьшается действующее напряжение на нагрузке.

Это называется фазовым регулированием, а устройство с таким принципом регулирования – С истема И мпульсно- Ф азового У правления (СИФУ).

Процесс регулирования по такому принципу в англоязычной литературе называют Leading Edge Dimming, что переводится как диммирование по возрастающему (переднему) фронту фазы. Есть регуляторы, которые, наоборот, срезают заднюю часть синусоиды, но их мы рассматривать не будем.

Но это не единственный метод регулировки мощности нагрузки, есть ещё и так называемое целочисленное или широтно-импульсное управление (не путать с ШИМ), когда через тиристор или симистор включают нужное число полуволн и амплитудный метод.

Читайте также: