Как днк предоставляет информацию о структуре белковой молекулы

Обновлено: 07.07.2024

Генетический код. Биосинтез белка в клетке

Одна из самых замечательных особенностей жизни состоит в том, что все живые существа характеризуются общностью строения клеток и происходящих в них процессов. Однако они имеют и очень много различий. Даже особи одного вида различаются по многим свойствам и признакам: морфологическим, физиологическим, биохимическим.

Современная биология показала, что в своей основе сходство и различие организмов определяются в конечном счете набором белков. Чем ближе организмы друг к другу в систематическом положении, тем более сходны их белки.

К середине XX века учёными было установлено, что белки представляют собой последовательность аминокислот, соединённых пептидными связями, а гены, входящие в состав хромосом ядра каждой клетки, определяют наследование физических и физиологических признаков организма и управляют синтезом белков.

Таким образом, в последовательности нуклеотидов молекулы ДНК заключена генетическая информация о первичной структуре всех белков не только одной клетки, но и всего организма.

Для всех живых организмов свойственен общий универсальный способ кодирования последовательности аминокислот в белках при помощи нуклеотидной последовательности молекул ДНК. Этот способ кодирования называется генетическим кодом. На сегодняшний момент генетический код расшифрован генетиками, и составлена карта генетического кода.

Генетический код

Впервые расшифровка кода наследственности была предложена в 1954 г. физиком Джорджем Гамовым, который утверждал, что каждую аминокислоту белка кодируют три последовательно расположенных нуклеотида – триплет, или кодон. Известны все кодоны 20 аминокислот, входящих в состав белков. Так как в состав нуклеотидов ДНК могут входить 4 азотистых основания (аденин, гуанин, цитозин, тимин), а одну аминокислоту кодируют три нуклеотида, не трудно посчитать, что ДНК может кодировать 43, т.е. 64 аминокислоты. Но всего нужно кодировать 20 аминокислот. Оказалось, что некоторые аминокислоты могут кодировать не один, а несколько разных кодонов. Подобное явление получило название вырожденности генетического кода. Считается, что таким образом повышается надёжность хранения и передачи информации от материнской клетки к дочерним.

Некоторые кодоны не несут смысловой нагрузки и не кодируют ни одну аминокислоту. Три таких кодона – УАА (читается урацил, аденин, аденин,), УАГ (урацил, аденин, гуанин) и УГА (урацил, гуанин, аденин) ограничивают один ген от другого, т.е. обозначают начало или конец гена. Такие кодоны называются кодоны терминации (стоп-кодоны).

Один триплет может кодировать только одну аминокислоту, что говорит о специфичности генетического кода.

Заслуга расшифровки генетического кода принадлежит испанскому биохимику СевЕро ОчОа, который в 1955 г. постепенно установил строение многих триплетов, кодирующих аминокислоты. Он расшифровал триплетный код для 11 аминокислот. Работы ОчОа доказывают универсальность генетического кода.
В 1959 г. ученому была присуждена Нобелевская премия по физиологии и медицине, которую он разделил со своим студентом и сотрудником Артуром Корнбергом.
В 1961 году сотрудники Пастеровского института Франсуа Жакоб и Жак Моно выдвинули гипотезу о механизмах биосинтеза белков в клетке, согласно которой ДНК управляет синтезом белков опосредованно. Посредником выступает особая молекула РНК, структура которой представляет собой как бы отпечаток структуры молекулы ДНК. За это открытие учёные получили Нобелевскую премию по медицине и физиологии в 1965 году.

Биосинтез белка является одним из важнейших этапов метаболизма клетки, который осуществляется путём реализации наследственной информации. Наследственная информация о структуре белков, которую должна синтезировать клетка, сосредоточена в молекулах ДНК, расположенных в ядре. Непосредственно процесс синтеза белков происходит в цитоплазме на рибосомах. Закодированная информация о структуре белка поступает из ядра к рибосомам в виде молекулы информационной РНК, которая имеет небольшие по сравнению с ДНК размеры и свободно проходит сквозь поры ядерной мембраны.

Биосинтез белка

Кроме наследственной информации, для синтеза белка необходим определённый набор аминокислот. Некоторые аминокислоты организм синтезирует сам, но большинство образуются в результате расщепления белков, поступающих в организм с пищей. Аминокислоты доставляются к рибосомам специальными транспортными РНК, каждая из которых может захватывать и переносить только одну определённую аминокислоту.

Структура транспортной РНК

На рибосомах осуществляется второй этап биосинтеза белка – трансляция, который представляет собой перевод нуклеотидной последовательности молекулы иРНК в последовательность аминокислот белковой молекулы.иРНК соединяется с рибосомой тем концом, с которого начнётся синтез белка. Началом подавляющего количества белковых молекул является триплет АУГ (читается аденин, урацил, гуанин), который кодирует аминокислоту метионин.

Продвигаясь по иРНК, рибосома последовательно считывает информацию с каждого её участка размером в 2 кодона, (т.е. 3+3= 6 нуклеотидов каждый участок) задерживаясь на 0,2 секунды. За это время рибосома взаимодействует с двумя молекулами тРНК, антикодон которых комплементарен кодонам иРНК, перекрытым рибосомой. Аминокислота отделяется от тРНК и включается в структуру синтезируемой белковой цепи. Достигнув стоп-кодона, рибосома прекращает синтез белка. Синтезированный белок отделяется от рибосомы и выходит в цитоплазму.

Весь цикл процессов, связанных с синтезом одной белковой молекулы, занимает в среднем 1-3 с. При этом на одной молекуле иРНК одновременно располагаются несколько рибосом (такой комплекс называется полисомой) – это обеспечивает одновременный синтез сразу нескольких одинаковых молекул белка. По окончании синтеза белка рибосома связывается с другой иРНК и начинает синтезировать новый белок.

Рибосомы воспринимают генетическую информацию в виде молекул иРНК и, будучи запрограммированы последними, делают белки в точном соответствии с данной программой. Поэтому, если в генетическом аппарате клетки возникают нарушения в следствии мутации или поражения клетки вирусной нуклеиновой кислотой, рибосомы начинают синтезировать не свойственные для клетки данного типа белки, в том числе такие, которые могут привести к её гибели.


Цитология – раздел биологии, изучающий жизнедеятельность клетки.

Множество простейших и микроорганизмов представляют собой существующие отдельно друг от друга клетки. Тела многоклеточных организмов построены из огромного числа клеток. Независимо от того, представляет собой клетка целостную живую систему, либо ее часть, она наделена набором признаков и свойств, характерных для всех клеток.

Клетка состоит из простых и сложных молекул белков, нуклеиновых кислот (ДНК и РНК), липидов, углеводов, минеральных веществ и, конечно же, воды. Белкам и нуклеиновым кислотам принадлежит основная роль в синтезе из простых микромолекул сложных макромолекул, в освобождении и превращении энергии из поступающих в клетку веществ.

Клетка – основная структурно-функциональная единица живого. Клетка – биологически автономная система, способная самостоятельно осуществлять все процессы, присущие живой материи (рост, размножение, раздражимость и т. д.)

Но изучение срезов тканей растительных и животных организмов в 17–18 веках носили описательный характер. Более подробное изучение жизнедеятельности клетки началось с усовершенствованием увеличительной техники в 19 веке. Немецкие ученые М. Шлейден и Т. Шванн (1839 г.) сопоставили ткани растительных и животных организмов, обнаружили общий принцип строения и роста тех и других клеток.

Позднее, благодаря открытию процессов роста и деления, а также ряда биохимических процессов клетки, сформировалась клеточная теория.

Основные положения классической клеточной теории:

1. Клетка – наименьшая структурная единица живого.

2. Все живые организмы состоят из клеток (одной – одноклеточный организм, или множества – многоклеточный организм)[34].

3. Несмотря на огромное разнообразие внешних форм, все клетки сходны между собой по внутреннему строению, химическому составу и принципам жизнедеятельности.

Клетки многоклеточного организма объединяются в ткани, ткани – в органы, органы в системы органов.

Все вещества, входящие в состав клетки (и живого организма в целом) принято делить на две группы – группу неорганических веществ и группу органических веществ (рис. 3.4):

_3_4.tif

Рис. 3.4. Простейшая классификация веществ живых организмов.
Неорганические вещества в живой клетке представлены, прежде всего, водой, а также микро- и макроэлементами, присутствующими в составе различных солей

Воды в организме содержится, в среднем 83 %. Функции воды:

а) Вода является прекрасным растворителем. Вещества, растворенные в воде, проникают в клетку, обеспечивая ее питание.

в) Вода поддерживает тургор (упругость) клетки.

г) Все биохимические процессы (окисление – восстановление, синтез – разложение, каталитические реакции и т. д.) происходят в водной среде.

д) Кроме того, вода обладает большой теплоемкостью и теплопроводностью, что обеспечивает гармоничное распределение и сохранение тепла в организме.

Примеры микро- и макроэлементов приведены на рис. 3.5.

_3_5.wmf

Рис. 3.5. Микроэлементы и макроэлементы живого организма

Органические вещества живой клетки представляют: липиды, углеводы, белки, нуклеиновые кислоты.

Липиды – производные высших жирных кислот, химический состав которых можно представить формулой СmHnOl. К липидам, в частности, относятся жиры, химический состав которых подробно рассматривается в курсе органической химии. При этом, жидкие жиры (масла) чаще растительного происхождения (исключение – рыбий жир), твёрдые – животного происхождения (исключение – пальмовое масло).

1. Строительная. Липиды входят в состав всех биологических мембран.

2. Энергетическая. Липиды являются источником энергии для организма. При окислении 1 г липидов до СО2 и Н2О выделяется 39 кДж энергии:

s415.wmf

[35].

Выделяющаяся при этом вода называется метаболической.

3. Теплоизоляционная. Липиды – отличный теплоизолятор. Эта функция играет большую роль при адаптации организмов к холодной среде обитания, например, моржей и тюленей в холодных водоёмах.

4. Влагообеспечивающая. Как видно из функции 2, жиры служат дополнительным источником воды в организме. Эта функция особенно важна для обитателей засушливых зон.

Углеводы, входящие в состав живых клеток, подразделяют на простые и сложные (рис. 3.6)

_3_6.tif

Рис. 3.6. Простейшая классификация углеводов, входящих в состав живых клеток

1. Энергетическая. Основным источником энергии для организма являются простые сахариды. Важнейшим из них является глюкоза. При окислении 1 г глюкозы освобождается 17,6 кДж энергии. Некоторые сложные углеводы представляют собой дополнительный запас энергии. В частности, организм получает значительное количество энергии для жизнедеятельности при окислении полимерных молекул крахмала (в телах растений) или гликогена (в телах животных).

2. Строительная. Сложные углеводы являются строительным материалом для некоторых живых организмов. Например, целлюлоза входит в состав древесины, а хитин – в наружный скелет насекомых.

Белки – сложные полимеры. На долю белков приходится 50 % от сухой массы живого организма. Белки – уникальная природная форма, из которой состоят все живые организмы планеты. В организме человека встречаются 5 млн типов белков, отличающихся не только друг от друга, но и от белков других организмов. Белки состоят из аминокислот (мономеры), соединенных друг с другом в определенной последовательности, присущей только определенному организму. Всего известно 20 разновидностей аминокислот. В молекуле белка эти аминокислоты соединены друг с другом прочной пептидной связью[36]. В состав 1 молекулы белка входят от 51 до нескольких сотен аминокислот.

1. Строительная. Белки входят в состав всех вещественных биологических структур: клеток, тканей, органов, крови (рис. 3.7).

_3_7.tif

Рис. 3.7. Простейшая классификация белков, реализующих строительную функцию

2. Каталитическая. Группа белков, являющихся катализаторами биохимических процессов, называется ферментами. Некоторые ферменты ускоряют протекание реакций в десятки и сотни тысяч раз. Схема работы ферментов с субстратами – веществами, вступающими в биохимический процесс, приведена на рис. 3.8.

3. Транспортная. Существует ряд белков, транспортирующих вещества к различным тканям (например, гемоглобин – белок, переносящий кислород к клеткам) и удаляющих продукты обмена. Многие молекулы (например, сахара) не способны проникнуть в клетку без помощи специфических белков-переносчиков.

_3_8.tif

Рис. 3.8. Схема работы ферментов:
а – сближение субстратов (С) с ферментом.; б – образование
фермент-субстратного комплекса; в – превращение субстратов
в продукты реакции (ПР); г – разъединение продуктов реакции и фермента

4. Гормональная. Гормоны – биологически активные вещества, вырабатываемые железами внутренней секреции и регулирующие физиологические процессы в организме. При недостатке гормонов возникают патологические изменения, приводящих к заболеваниям и даже гибели организма. Некоторые из гормонов являются белками.

5. Защитно-иммунная. Белки, входящие в состав иммунных клеток (лейкоцитов) обеспечивают защиту от бактерий и вирусов. Эти белки (антитела) связываются с чужеродными организму веществами, образуя комплекс, который затем удаляется из организма

7. Двигательная. Некоторые из белков, входящих в состав мышц способны сокращаться, а, значит, приводить организм в движение.

8. Энергетическая. Иногда, хотя и достаточно редко, белки могут служить дополнительным источником энергии. При окислении 1 г белка освобождается 17,6 кДж.

Нуклеиновые кислоты в живых клетках представлены двумя типами: дезоксирибонуклеиновые кислоты (ДНК) и рибонуклеиновые кислоты (ДНК).

Современная структурная модель ДНК была впервые предложена американским биологом Дж. Уотсоном совместно с английским физиком Ф. Криком в 1953 году и представляет собой две полинуклеотидные цепи, соединённых водородными связями и закрученные в спираль. В каждой цепочке содержится от пятисот до нескольких сотен тысяч нуклеотидов. Условная схема строения нуклеотида представлена на рис. 3.9.

В нуклеотидах ДНК остаток фосфорной кислоты и дезоксирибоза – неизменные составляющие, в то время как азотистых оснований существует 4 разновидности: аденин, гуанин, цитозин и тимин. Поэтому каждый нуклеотид принято обозначать тем же названием, что и азотистое
основание, входящее в его состав (аденин, гуанин, цитозин, тимин). Поскольку водородные связи в ДНК могут возникать только попарно, по принципу комплементарности: аденин (А) связывается только с тимином (Т), гуанин (Г) – только с цитозином (Ц), то, зная последовательность одной цепи, можно составить последовательность второй цепи.

_3_9.tif

Рис. 3.9. Схема строения нуклеотида ДНК

При определённых условиях, перед делением клетки, ДНК объединяется с многочисленными белками в единый комплекс, который называется хромосома (рис. 3.10).

_3_10.tif

Рис. 3.10. Строение реплицированной (удвоенной) хромосомы

Уникальность дезоксирибонуклеиновой кислоты состоит в том, что её молекула является хранилищем сведений о составе всех белков, вырабатываемых организмом, а, значит, содержит в себе информацию обо всех его внешних и внутренних признаках, причём, передаваемую из поколения в поколение от родителей – потомству. Биологическая передача сведений потомству о своих признаках осуществляется благодаря репликации ДНК.

Репликация ДНК – это процесс её удвоения, протекающий с участием специальных ферментов при подготовке клетки к делению. Репликацию можно условно разделить на три стадии (рис. 3.11):

1. Раскручивание двойной спирали ДНК с одного конца под действием фермента.

2. Достраивание по принципу комплементарности новых цепей на разъединившихся прежних цепях.

3. Окончательное формирование двух новых ДНК. В каждой из них одна цепь принадлежала прежней ДНК, а вторая достроена по принципу комплементарности.

_3_11.tif

Рис. 3.11. Схема репликации ДНК:
а – раскручивание двойной спирали ДНК; б – достраивание новых цепей
на разъединившихся прежних цепях; в – окончательное формирование двух новых ДНК

Таким образом, при делении клетки обе дочерние клетки получают совершено одинаковые ДНК.

Также как и ДНК, молекула рибонуклеиновой кислоты (РНК) представляет собой полинуклеотидную цепь. В отличие от ДНК она одноцепочечная и содержит намного меньше нуклеотидов. Другим существенным отличием РНК от ДНК является химический состав нуклеотидов: нуклеотиды РНК содержат остаток рибозы вместо дезоксирибозы (рис. 3.12) и вместо тимина в составе нуклеотидов РНК находится урацил.

Основная функция РНК – участие в синтезе белковых молекул. В зависимости от характера этого участия РНК подразделяют на матричные или информационные (мРНК), транспортные (тРНК), рибосомальные (рРНК):

– мРНК копирует с ДНК информацию о структуре белка, который нужно синтезировать и доставляет её к месту синтеза;

– (тРНК) – доставляет необходимые аминокислоты и в определенном порядке к месту синтеза белка;

Участок ДНК, содержащий сведения о первичной структуре одного определённого белка, называется геном. Совокупность всей информации обо всех белках, хранящаяся в ДНК иногда называют генетической программой. Последовательность нуклеотидов ДНК определяет аминокислотную последовательность молекулы белка. Эта зависимость между молекулой ДНК и строением белковой молекулы называется генетический код. Генетический код известен для всех 20 аминокислот.

_3_12.tif

Рис. 3.12. Схема строения нуклеотида РНК

Процесс передачи информации генетического кода в конкретный белок протекает следующим образом:

1. С помощью специальных ферментов на поверхности гена формируется комлементарная цепь матричной РНК. В данном случае ген является матрицей с которой делается слéпок – м-РНК.

2. Образовавшаяся м-РНК перемещается к месту синтеза белка – к рибосомам.

а возле кодона ГЦУ – только аланин

form_85.tif

Всего в построении белковой молекулы участвует 20 различных аминокислот.

4. Между располагающимися в строго определённой последовательности аминокислотами образуется пептидная связь

form_86.tif

и постепенно формируется молекула белка. Следует подчеркнуть, что синтез белковых молекул осуществляется при активном участии огромного количества всевозможных ферментов.

1. Что такое клетка? В чем заключается ее биологическое значение?

2. В чем заключаются основные положения клеточной теории Шлейдена – Шванна?

3. Какие вещества неорганической природы включены в состав клетки? Объясните их значение.

4. Какое значение для клетки имеют органические вещества: липиды, углеводы и белки?

5. Что такое ДНК? Расскажите о ее строении. Каково значение ДНК для клетки?

6. О чем гласит принцип комплементарности в построении молекулы ДНК?

Произвести достройку молекулы ДНК: А-Г-Г-Г-Ц-А-Т-Г-Т-Т-А-Ц-Г-Ц.

7. Задача: в молекуле ДНК 19 % цитозина. Определить количество остальных нуклеотидов.

8. В чем биологический смысл репликации ДНК?

9. В чем особенности строения РНК? Какие виды РНК встречаются в клетке и какую функцию осуществляют?

10. Каким образом происходит реализация генетической программы?
В чем ее биологический смысл?

ДНК (дезоксирибонуклеиновая кислота) — это линейный органический полимер, мономерными звеньями которого являются нуклиатиды.

Вся информация о строении и функционировании любого живого организма содержится в закодированном виде в его генетическом материале. Основу генетического материала организма составляет дезоксирибонуклеиновая кислота (ДНК).

ДНК большинства организмов – это длинная двухцепочечная полимерная молекула. Последовательность мономерных звеньев (дезоксирибонуклеотидов) в одной ее цепи соответствует (комплементарна) последовательности дезоксирибонуклеотидов в другой. Принцип комплементарности обеспечивает синтез новых молекул ДНК, идентичных исходным, при их удвоении (репликации).

Участок молекулы ДНК, кодирующий определенный признак, – ген.

Гены – это индивидуальные генетические элементы, имеющие строго специфичную нуклеотидную последовательность, и кодирующие определенные признаки организма. Одни из них кодируют белки, другие — только молекулы РНК.

Информация, которая содержится в генах, кодирующих белки (структурных генах), расшифровывается в ходе двух последовательных процессов:

  • синтеза РНК (транскрипции): на определенном участке ДНК как на матрице синтезируется матричная РНК (мРНК).
  • синтеза белка (трансляции): В ходе согласованной работы многокомпонентной системы при участии транспортных РНК (тРНК), мРНК, ферментов и различных белковых факторов осуществляется синтез белковой молекулы.

Все эти процессы обеспечивают правильный перевод зашифрованной в ДНК генетической информации с языка нуклеотидов на язык аминокислот. Аминокислотная последовательность белковой молекулы определяет ее структуру и функции.

Строение ДНК

ДНК – это линейный органический полимер. Его мономерные звенья – нуклеотиды, которые, в свою очередь, состоят из:

  • азотистого основания;
  • пятиуглеродного сахара (пентозы);
  • фосфатной группы (рисунок 1).

ДНК строение одной цепочки нуклеотидов

Рисунок 1 : ДНК – строение одной цепочки нуклеотидов

При этом, фосфатная группа присоединена к 5′-атому углерода моносахаридного остатка, а органическое основание — к 1′-атому.

Основания в ДНК бывают двух типов:

  • Пуриновые: аденин ( А ) и гуанин (G);
  • Пиримидиновые: цитозин (С) и тимин (Т);(рисунок 2),

Азотистые основания пуриновые и пиримидиновые

Рисунок 2: Азотистые основания- пуриновые и пиримидиновые

Строение нуклеотидов в молекуле ДНК

В ДНК моносахарид представлен 2′-дезоксирибозой, содержащей только 1 гидроксильную группу (ОН), а в РНК — рибозой, имеющей 2 гидроксильные группы (OH).

Нуклеотиды соединены друг с другом фосфодиэфирными связями, при этом фосфатная группа 5′-углеродного атома одного нуклеотида связана с З’-ОН-группой дезоксирибозы соседнего нуклеотида (рисунок 1). На одном конце полинуклеотидной цепи находится З’-ОН-группа (З’-конец), а на другом — 5′-фосфатная группа (5′-конец).

Уровни структуры ДНК

Принято выделять 3 уровня структуры ДНК:

  • первичную;
  • вторичную;
  • третичную.

Первичная структура ДНК – это последовательность расположения нуклеотидов в полинуклеотидной цепи ДНК.

Вторичная структура ДНК стабилизируется водородными связями между комплементарными парами оснований и представляет собой двойную спираль из двух антипараллелных цепочек, закрученных вправо вокруг одной оси.

Общий виток спирали- 3,4нм, расстояние между цепочками 2нм.

Третичная структура ДНК – суперсперализация ДНК. Двойная спираль ДНК на некоторых участках может подвергаться дальнейшей спирализации с образованием суперспирали или открытой кольцевой формы, что часто вызвано ковалентным соединением их открытых концов. Суперспиральная структура ДНК обеспечивает экономную упаковку очень длинной молекулы ДНК в хромосоме. Так, в вытянутой форме длина молекулы ДНК составляет 8 см, а в форме суперспирали укладывается в 5 нм.

Правило Чаргаффа

Правило Э. Чаргаффа – это закономерность количественного содержания азотистых оснований в молекуле ДНК:

Модель ДНК Уотсона-Крика

Б 1953 г. Джеймс Уотсон и Фрэнсис Крик, основываясь на данных рентгеноструктурного анализа кристаллов ДНК, пришли к выводу, что нативная ДНК состоит из двух полимерных цепей, образующих двойную спираль (рисунок 3).

Навитые одна на другую полинуклеотидные цепи удерживаются вместе водородными связями, образующимися между комплементарными основаниями противоположных цепей (рисунок 3). При этом аденин образует пару только с тимином, а гуанин — с цитозином. Пара оснований А—Т стабилизируется двумя водородными связями, а пара G—С — тремя.

Длина двухцепочечной ДНК обычно измеряется числом пар комплементарных нуклеотидов (п.н.). Для молекул ДНК, состоящих из тысяч или миллионов пар нуклеотидов, приняты единицы т.п.н. и м.п.н. соответственно. Например, ДНК хромосомы 1 человека представляет собой одну двойную спираль длиной 263 м.п.н.

Рисунок 3: Модель ДНК Уотсона-Крика

Цепи молекулы ДНК антипараллельны: одна из них имеет направление 3’→5′, другая 5’→3′. В соответствии с принципом комплементарности, если в одной из цепей имеется нуклеотидная последовательность 5-TAGGCAT-3′, то в комплементарной цепи в этом месте должна находиться последовательность 3′-ATCCGTA-5′. В этом случае двухцепочечная форма будет выглядеть следующим образом:

В такой записи 5′-конец верхней цепи всегда располагают слева, а 3′-конец — справа.

Носитель генетической информации должен удовлетворять двум основным требованиям: воспроизводиться (реплицироваться) с высокой точностью и детерминировать (кодировать) синтез белковых молекул.

Модель ДНК Уотсона—Крика полностью отвечает этим требованиям, так как:

Представьте себе, что глаза у вас завязаны, а в руках – ​четки. Одна бусина на четках своей формой не похожа на остальные, и задача – ​найти ее на ощупь. Вроде бы несложно, да? Ладно, пусть есть четыре возможных формы бусин, а непохожая отличается от всех них. Сложнее, но выполнимо.

Приблизим задачу к реальности. Бусин – ​шесть миллиардов, непохожие попадаются один раз на миллион. А кому сейчас легко?

ДНК: текст или нет?


Найдите в этом тексте то, чего здесь быть не должно!
За начало границы муниципального района Волжский Самарской области принята точка, расположенная в юго-западном углу лесного квартала 21 Советского лесничества Кинельского лесхоза на развилке лесных дорог (точка 1 – пересечение границ муниципальных районов Волжский, Красноярский и Кинельский Самарской области), далее граница проходит смежно границе муниципального района Кинельский Самарской области в восточном направлении по южным границам лесных кварталов 21, 22 Советского лесничества Кинельского лесхоза до юго-восточного угла квартала 22 Советского лесничества Кинельского лесхоза (точка 12), в южном направлении на расстоянии 360 м, пересекая автодорогу, идущую от поселка городского типа Новосемейкино муниципального района Красноярский Самарской области до кольца автодороги, идущей от города Самары до города Отрадного, далее в западном направлении по северной границе лесного квартала 99 Советского лесничества Кинельского лесхоза, в южном направлении по западным границам лесных кварталов 62, 32, 33 и 34 Советского лесничества Кинельского лесхоза, в восточном направлении по южной границе лесного квартала 34 Советского лесничества Кинельского лесхоза до юго-восточной границы этого квартала (точка 51), в юго-восточ­ном направлении по тальвегу оврага Ближний до реки Падовка (точка 406), меняя направление с юго-восточного на юго-западное по середине реки Падовка на расстоянии 3,2 км (точка 599), в южном направлении по территории дачного массива восточнее границы карьера по добыче щебня и поселка Спутник до пересечения с автодорогой, идущей от города Самары до города Отрадного (точка 605), в западном направлении по северной границе полосы отвода (25 м) этой автодороги на расстоянии 63 м (точка 606), в южном направлении по территории дачных участков, примыкающих к поселку городского типа Смышляевка, пересекая Куйбышевскую железную дорогу на участке от станции Безымянка до станции Кинель, до южной границы полосы отвода этой железной дороги (точка 628), в северо-западном направлении по южной границе этой железной доqоги на расстоянии 590 м (точка 629), в юго-западном направлении по земляной дамбе до поворота ее на юго-восток (точка 683), в юго-восточном направлении по восточной стороне этой дамбы на расстоянии 680 м и в этом же направлении по озеру, заболоченному лугу до старицы реки Самара (точка 780), в северо-восточном направлении по этой старице на расстоянии 1,2 км (точка 804), в юго-восточном направлении на расстоянии 320 м до середины реки Самара (точка 805), в северо-восточном направлении…

Что и зачем искать

Такая задача – ​найти редкую мишень на фоне огромного избытка другой, нецелевой ДНК – ​стоит перед очень многими белками в клетке. Все эти белки можно поделить на две большие группы по типу узнаваемых мишеней, потому что для поиска они используют общую стратегию, а вот узнавание идет немного по-разному.


– Уподобление биологической последовательности тексту – очень сильное упрощение, крайне вредное, если мы пытаемся понять, как же этот екст читается. Она скорее похожа на запутанные четки из миллиардов бусин, каждая из которых хоть чуть-чуть да не похожа на остальные

Во вторую группу белков входят те, которые должны узнавать в составе нормальной ДНК то, что на нее не похоже. Прежде всего это повреждения ДНК. Они постоянно возникают под действием вредных факторов внешней среды (радиация, ультрафиолет, химические вещества), но гораздо более опасны обыкновенная вода и кислород, которые на самом деле представляют собой довольно-таки реакционноспособные соединения. Ежедневно в каждой нашей клетке появляются сотни тысяч повреждений, и если их не исправлять, клетка либо погибнет, либо, что еще хуже, будет накапливать мутации, которые рано или поздно приведут к ее превращению в раковую.

Как правильно читать законы: 1D против 3D

Смысл этого упражнения в том, чтобы искать, а не в том, чтобы найти. Те, кто искал, но не нашел, могут посмотреть ответ в конце статьи. А теперь подумайте, как вы искали. Кто-то, возможно, начал чтение с самого начала и внимательно, последовательно пробегал глазами каждую строчку слева направо. Кто-то (таких, скорее, большинство), наоборот, побегал глазами туда-сюда по одному фрагменту текста, ничего подозрительного не заметил, перескочил на другой, на третий…

В Москву? В Моркву? В М¤скву?

Итак, мы более-менее понимаем, как в ДНК можно что-то искать. А как это найти? Это совершенно другой вопрос: как белок понимает, что то, с чем он в данный момент связан, мишень? Она ведь часто очень мало отличается от не-мишени: поменяйте слово ААТТГТГАГЦГГАТААЦААТТ на ААТТГТГЦГЦГГАТААЦААТТ, и Lac-репрессор с такой ДНК перестанет связываться вовсе. Белки, узнающие последовательности, и белки, узнающие повреждения ДНК, решают эту задачу немного по-разному, хотя, если вдуматься, общие принципы все равно есть.

Белки, которые узнают последовательность, делают это за счет образования множества слабых водородных связей с несколькими критически важными основаниями ДНК в этой последовательности. Их движение по ДНК похоже на скольжение по смазке: между поверхностями белка и ДНК находится слой молекул воды, которые также образуют множество связей с какими угодно молекулярными остатками. Если сам белок нужных связей с ДНК образовать не может, он продолжает скользить туда-сюда. Но стоит нащупать две-три специфичные позиции, как происходит резкое торможение: вода изгоняется из области контакта, и есть время, чтобы попытаться закончить образование всех необходимых связей. Не получилось? Значит, перед нами не мишень; вода просачивается обратно и поиск продолжается.

Кстати, узнавание последовательностей тоже иногда требует механического воздействия на ДНК или хотя бы учета ее формы. Например, некоторые последовательности, узнаваемые факторами транскрипции, могут иметь уже существующий небольшой изгиб или же изменять свою структуру при связывании узнающего белка. Так что и тут чтение ДНК отличается от простого чтения букв в тексте.

Цена ошибки

Конечно, в природе нет совершенства, и наши белки могут делать ошибки. Важно понимать, что ошибки при узнавании могут быть двух сортов: принять за мишень то, что мишенью не является, и, наоборот, не узнать мишень. Ошибки второго рода не очень страшны как раз из-за механизма ненаправленного поиска: в самом деле, если на каком-то шаге белок не узнал свою мишень, с вероятностью ½ он к ней вернется через два шага поиска и получит еще один шанс. И так неоднократно.

Гораздо хуже ошибки первого рода: если расщепить ДНК или запустить работу гена не там, где надо, это может иметь печальные последствия для клетки. Поэтому эволюция белков, узнающих ДНК, шла по пути уменьшения вероятности ошибок первого рода, а на ошибки второго рода особого внимания не обращала. Это привело к тому, что, например, белки репарации, как ни странно, узнают повреждения в ДНК очень неэффективно – ​в лучшем случае, к узнаванию приводит каждая вторая встреча с повреждением, а гораздо чаще – ​каждая десятая-двадцатая. Это дает ученым надежду на то, что такие белки можно улучшить разными генноинженерными путями, хотя бы для использования в качестве лабораторных инструментов.

Зато отличают поврежденную ДНК от нормальной системы репарации сверхнадежно: даже при избытке нормальных оснований в миллионы раз они не узнаются ошибочно как повреждения.

Казалось бы, изучение того, как белки движутся по ДНК и узнают разные ее участки, пример чистого научного любопытства, никак не способного помочь в реальной жизни. Однако, как это часто случается в науке, в попытках ответа на совершенно отвлеченные вопросы неожиданно рождается что-то интересное для практики. Недавно, например, выяснилось, что некоторые вирусы – ​в том числе такие опасные, как вирус оспы, – ​используют видоизмененный белок репарации урацил-ДНК-гликозилазу в процессе копирования своей ДНК. При этом вирусу нужна именно способность этого фермента скользить по ДНК: белок прикрепляется к вирусному комплексу, который синтезирует ДНК, и помогает ему двигаться, не выпуская цепи. Зацепившись за это наблюдение, сотрудники лаборатории геномной и белковой инженерии Института химической биологии и фундаментальной медицины СО РАН разработали ингибиторы скольжения вирусного белка по ДНК, которые могут дать начало принципиально новому классу противовирусных лекарств.

А вот другой модный сегодня белок – ​недавно открытая нуклеаза Cas9, которая стала основой большинства современных технологий редактирования генома, – ​ищет свои мишени, используя только обычную диффузию в трехмерном пространстве. В той же лаборатории сейчас работают над созданием улучшенных вариантов этого белка, способных все-таки передвигаться вдоль ДНК и быстрее находить цель. Знание того, как работают молекулярные машины в деталях, всегда необходимо для осмысленных попыток обратить их на пользу человеку.

Жарков Д. О. Часовые генома // Наука из первых рук. 2009. Т. 28. № 4. С. 160–169.

Мечетин Г. В., Жарков Д. О. Механизмы диффузионного поиска специфичных мишеней ДНК-зависимыми белками // Биохимия. 2014. Т. 79. № 6. С. 633–644.

Zharkov D. O., Grollman A. P. The DNA trackwalkers: Principles of lesion search and recognition by DNA glycosylases // Mutat. Res. 2005. V. 577. N. 1–2. P. 24–54.

Тема 1: Нуклеиновые кислоты — что это?

Нуклеиновые кислоты (от лат. nucleus - ядро) - это природные высокомолекулярные органические соединения, обеспечивающие хранение и передачу наследственной (генетической) информации в живых организмах. Нуклеиновые кислоты представляют собой биополимеры, состоящие из мономеров - нуклеотидов.

Биосинтез белка. №27 ЕГЭ., изображение №1

В состав каждого нуклеотида входят:

• Простой углерод - рибоза или дезоксирибоза;

• Остаток фосфорной кислоты.

Существует два типа нуклеиновых кислот: дезоксирибонуклеиновая кислота - ДНК, содержащая дезоксирибозу, и рибонуклеиновая кислота - РНК, содержащая рибозу. Рассмотрим каждый тип нуклеиновых кислот.
*но перед этим внимательно посмотрите на схему выше*

Строение ДНК.

ДНК — это полимерное соединение с постоянным (стабильным) содержанием в клетке. ДНК содержится почти исключительно в ядре клетки.

По своей структуре молекула ДНК представляет собой две полимерные цепи, соединенные между собой и закрученные в форме двойной спирали.

Важно знать! Создана модель структуры ДНК в 1953 г. Д. Уотсоном и Ф. Криком, за что оба были удостоены Нобелевской премии.

Основной структурной единицей одной цепи является нуклеотид, состоящий из азотистого основания, дезоксирибозы и фосфатной группы. ДНК содержит 4 вида азотистых оснований: аденин (А), тимин (Т), гуанин (Г), цитозин (Ц).

Биосинтез белка. №27 ЕГЭ., изображение №2

Азотистые основания подходят друг к другу настолько близко, что между ними возникают водородные связи.
Четко проявляется в их расположении важная закономерность: аденин (А) одной цепи связан с тимином (Т) другой цепи двумя водородными связями, а гуанин (Г) одной цепи связан тремя водородными связями с цитозином (Ц) другой цепи, в результате чего формируются пары А=Т и Г≡Ц.

Такая способность к избирательному соединению нуклеотидов называется комплементарностью, т. е. пространственное и химическое соответствие между парами нуклеотидов, или Правилом Чаргаффа.

Биосинтез белка. №27 ЕГЭ., изображение №3

Эрвин Чаргафф

Последовательность соединения нуклеотидов одной цепи противоположна (комплементарна) таковой в другой, т. е. цепи, составляющие одну молекулу ДНК, разнонаправлены, или антипараллельны.
Цепи закручиваются вокруг друг друга и образуют двойную спираль. Большое число водородных связей обеспечивает прочное соединение нитей ДНК и придает молекуле устойчивость, сохраняя в то же время ее подвижность - под влиянием ферментов она легко раскручивается (деспирализуется).

Биосинтез белка. №27 ЕГЭ., изображение №5

Строение РНК.

РНК — одноцепочечная молекула, построенная так же, как и одна из цепей ДНК. По своей структуре молекулы РНК менее крупные, чем молекулы ДНК.
Мономеры РНК - нуклеотиды, состоят из азотистого основания, рибозы и фосфатной группы.

РНК содержит 4 азотистых основания: Аденин (А), Урацил (У), Гуанин (Г), Цитозин (Ц).

Важно знать! В РНК тимин заменен на близкий к нему по строению урацил .

Биосинтез белка. №27 ЕГЭ., изображение №6

Биосинтез белка. №27 ЕГЭ., изображение №7

По выполняемым функциям среди РНК выделяют: транспортные, информационные (матричные) и рибосомные.

Биосинтез белка. №27 ЕГЭ., изображение №8

• Информационная (матричная) РНК (иРНК, мРНК) — одноцепочечная молекула, которая образуется в результате транскрипции на молекуле ДНК (копирует гены) в ядре и несет информацию об одной белковой молекуле к месту синтеза белка в рибосомах. О ней мы ещё подробно поговорим.

• Рибосомные РНК (рРНК) — самые крупные одноцепочечные молекулы, образующие вместе с белками сложные комплексы, поддерживающие структуру рибосом, на которых идет синтез белка. На долю рРНК приходится около 90% от общего содержания РНК в клетке. Т.е. всё что Вы должны о ней понимать — это то что она входит в состав рибосом, т.е. образует рибосомы.

Биосинтез белка. №27 ЕГЭ., изображение №9

Биосинтез белка. №27 ЕГЭ., изображение №10

Биосинтез белка. №27 ЕГЭ., изображение №11

Тема 2: Биосинтез белка.

ДНК — носитель всей генетической информации в клетке.
Но он непосредственного участия в синтезе белка (т. е. реализации этой наследственной информации) не принимает. В клетках животных и растений молекулы ДНК отделены ядерной мембраной от цитоплазмы, где происходит синтез белков. К рибосомам - местам сборки белков - высылается из ядра посредник, который несет скопированную информацию и способен пройти через поры ядерной мембраны. Таким посредником является информационная РНК.

1-ый этап биосинтеза. Транскрипция.

Транскрипция — это (простым языком) построение иРНК по ДНК. А если говорить более углублённо, это синтез молекул РНК (информационной) по принципу комплементарности на матрице одной из цепей ДНК. Происходит всё это в ядре под действием фермента - РНК-полимеразы (название фермента нужно просто запомнить).

Информационная РНК - это однонитевая молекула, и кодирование гена идет с одной нити двунитевой молекулы ДНК. Как говорилось ранее иРНК это посредник, который несет скопированную информацию ДНК и способен пройти через поры ядерной мембраны в цитоплазму.

Процесс транскрипции:

Если в транскрибируемой нити ДНК (с которой идёт копирование) стоит нуклеотид Г — то в составе иРНК это будет Ц;

Если в транскрибируемой нити ДНК (с которой идёт копирование) стоит нуклеотид Т— то в составе иРНК это будет А;

Если в транскрибируемой нити ДНК (с которой идёт копирование) стоит нуклеотид А— то в составе иРНК это будет У (т.к. в состав РНК не входит тимин Т). и т.д.

mRNA = матричная, или информационная РНК (мРНК, иРНК)

Биосинтез белка. №27 ЕГЭ., изображение №13

2-ой этап биосинтеза. Введение.

Перед тем как мы перейдём к следующему этапу — стоит ввести терминологию. Вам должны быть знакомы понятия триплет, кодон и антикодон.

Теперь потихоньку будем с Вами приходить к понятиям триплет и кодон. Полученная при транскрипции молекула иРНК служит матрицей (основой) для синтеза полипептида (белка) на рибосомах, я думаю это понятно. Теперь давайте вспомним из чего состоит белок? А белок состоит из аминокислот. Вот они:

Биосинтез белка. №27 ЕГЭ., изображение №14

Биосинтез белка. №27 ЕГЭ., изображение №15

Триплет — это участок ДНК (ДНК. — запомните), который состоит из 3-ёх нуклеотидов и кодирует определённый вид аминокислоты.

Кодон — это участок иРНК (иРНК. — запомните), который состоит из 3-ёх нуклеотидов и кодирует определённую аминокислоту. Но ещё раз напомню, что иРНК — это просто копия какой-либо нити ДНК.

Посмотрите на эту схему:

2-ой этап биосинтеза. Трансляция.

Полученная при транскрипции молекула иРНК служит матрицей для синтеза белка на рибосомах. Триплеты иРНК, кодирующие определенную аминокислоту, называются кодоны, на всякий случай скажу это ещё раз.

В трансляции принимают участие молекулы тРНК. Каждая молекула тРНК содержит антикодон – распознающий триплет, в котором последовательность нуклеотидов комплементарна по отношению к определенному кодону иРНК.

А теперь ещё раз напоминаю, что каждая молекула тРНК способна переносить строго определенную аминокислоту!

Вывод выше — это Ваш ключ к пониманию этой темы. Если Вы это не поняли — то перечитайте ещё пару раз и взгляните на схему ниже.

Биосинтез белка. №27 ЕГЭ., изображение №17

Итог 2-ой темы.

Биосинтез белка. №27 ЕГЭ., изображение №18

Биосинтез белка — это один из видов пластического обмена, в ходе которого наследственная информация, закодированная в генах ДНК, реализуется в определенную последовательность аминокислот в белковых молекулах.

Процесс биосинтеза белка состоит из двух этапов: транскрипции и трансляции.
P.S. Каждый этап биосинтеза катализируется соответствующим ферментом и обеспечивается энергией АТФ.

Биосинтез белка. №27 ЕГЭ., изображение №19

  1. Транскрипция — это процесс снятия информации с молекулы ДНК синтезируемой на ней молекулой иРНК (мРНК).

Биосинтез белка. №27 ЕГЭ., изображение №20

2. Трансляция — это перевод последовательности нуклеотидов молекулы иРНК в последовательность аминокислот молекулы белка.

Биосинтез белка. №27 ЕГЭ., изображение №21

Синтез белка продолжается до тех пор, пока на рибосоме не окажется один из трёх стоп-кодонов (УАА, УАГ или УГА). После этого белковая цепочка отсоединяется от рибосомы, выходит в цитоплазму и формирует присущую этому белку вторичную, третичную и четвертичную структуры.

Биосинтез белка. №27 ЕГЭ., изображение №22

Тема 3: Практика. Порешаем несколько заданий из ЕГЭ?

Задание 27. ЕГЭ.
Отрезок молекулы ДНК, определяющий первичную структуру белка, содержит следующую последовательность нуклеотидов:
-АТГГЦТЦТЦЦАТТГГ-. Определите последовательность нуклеотидов на и-РНК, число т-РНК, которые участвуют в биосинтезе белка, и нуклеотидный состав антикодонов т-РНК.
*не пугайтесь, всё просто*

Ответ:

1) Первым делом — просто перепишем эту последовательность ДНК, вот так:
*для удобства — можно разделить эту последовательность на триплеты, небольшими пробелами*

2) По заданию нас просят построить по этой последовательности ДНК построить иРНК, строим! *мы это умеем*
Подсказка: А будет переходить У (тимина в РНК нет), Г будет переходить Ц и наоборот, а Т будет переходить в А.

3) Теперь нужно выяснить количество тРНК и нуклеотидный состав их антикодонов. Ну давайте сначала определим число тРНК — оно будет равняться числу кодонов на иРНК. Считаем… Будет 5 тРНК! А теперь составим их нуклеотидный состав по принципу комплиментарности. Отмечу, что у нас всё ещё не будет Тимина — т.к. мы составляем цепь РНК. Иво ттак легко по принципу комплиментарности мы всё составили :)

!ПРАВИЛА ОФОРМЛЕНИЯ ЗАДАНИЯ №27 ЕГЭ!

  1. В ДНК и иРНК не нужно ставить никаких знаков препинания (можно для удобства разделить небольшим пробелом, как это делал я):
    ДНК: АТГ ГЦТ ЦТЦ ЦАТ ТГГ
    иРНК: УАЦ ЦГА ГАГ ГУА АЦЦ

2. Цепочки нужно строить строго друг под другом, буква под буквой!

Тема 3: Продолжение решения задач.

Задание 27. ЕГЭ.
В биосинтезе белка участвовали т-РНК с антикодонами: УУА, ГГЦ, ЦГЦ, АУУ, ЦГУ. Определите нуклеотидную последовательность участка каждой цепи молекулы ДНК, который несет информацию о синтезируемом полипептиде, и число нуклеотидов, содержащих аденин, гуанин, тимин, цитозин в двухцепочечной молекуле ДНК.

Ответ:

Задание 27. ЕГЭ.
В одной молекуле ДНК нуклеотиды с тимином (Т) составляют 24% от общего числа нуклеотидов. Определите количество (в %) нуклеотидов с гуанином (Г), аденином (А), цитозином (Ц) в молекуле ДНК и объясните полученные результаты.

Ответ: *он должен выглядеть так*

1) Аденин (А) комплементарен тимину (Т), а гуанин (Г) — цитозину (Ц), поэтому количество комплементарных нуклеотидов одинаково;
2) Количество нуклеотидов с аденином составляет 24%, т.к. количество нуклеотидов с тимином 24%
3) Количество гуанина (Г) и цитозина (Ц) вместе составляют 52%, а каждого из них — 26%.

Задание 27. ЕГЭ.
В молекуле ДНК содержится 17% аденина. Определите, сколько (в% ) в этой молекуле содержится других нуклеотидов.

Ответ: *он должен выглядеть так*

1) Количество аденина равно количеству тимина, следовательно, тимина в этой молекуле содержится 17% .
2) На гуанин и цитозин приходится 100% - 17% - 17% = 66%. Т.к. их количества равны, то Ц=Г=33%.

Задание 27. ЕГЭ.
В процессе трансляции участвовало 30 молекул т-РНК. Определите число аминокислот, входящих в состав синтезируемого белка, а также число триплетов и нуклеотидов в гене, который кодирует этот белок.

Ответ: *он должен выглядеть так*

1) Одна т-РНК транспортирует одну аминокислоту. Так как в синтезе белка участвовало 30 т-РНК, белок состоит из 30 аминокислот.
2) Одну аминокислоту кодирует триплет нуклеотидов, значит, 30 аминокислот кодирует 30 триплетов.
3) Триплет состоит из 3 нуклеотидов, значит количество нуклеотидов в гене, кодирующем белок из 30 аминокислот, равно 30х3=90.

Задание 27. ЕГЭ.
и-РНК состоит из 156 нуклеотидов. Определите число аминокислот, входящих в кодируемый ею белок, число молекул т-РНК, участвующих в процессе биосинтеза этого белка, и количество триплетов в гене, кодирующем первичную структуру белка. Объясните полученные результаты.

Ответ: *он должен выглядеть так*

1) Белок содержит 52 аминокислоты, т. к. одну аминокислоту кодирует один триплет (156:3).
2) т-РНК транспортирует к месту синтеза белка одну аминокислоту, следовательно, всего в синтезе участвуют 52 т-РНК.
3) В гене первичную структуру белка кодируют 52 триплета, так как каждая аминокислота кодируется одним триплетом.

Задание 27. ЕГЭ.
Дан фрагмент двухцепочечной молекулы ДНК. Воспользовавшись таблицей генетического кода, определите, какие фрагменты белковых молекул могут кодироваться кодируемой этим участком ДНК. Укажите не менее трёх этапов данного процесса. Ответ докажите.
ААА ТТТ ГГГ ЦЦЦ
ТТТ ААА ЦЦЦ ГГГ

Правила пользования таблицей: Первый нуклеотид в !триплете! (т.е. это всё делается по иРНК) берётся из левого вертикального ряда, второй — из верхнего горизонтального ряда и третий — из правого вертикального. Там, где пересекутся линии, идущие от всех трёх нуклеотидов, и находится искомая аминокислота.

Ответ: *он должен выглядеть так*

*эту таблицу учить не нужно — она прилагается в качестве дополнительных материалов на ЕГЭ*

1) Если и-РНК синтезируется на верхней цепи ДНК, то её фрагмент будет УУУ ААА ЦЦЦ ГГГ.
2) Фрагмент белка: фен–лиз–про–гли.
3) Если белок кодируется нижней цепью, то иРНК — ААА УУУ ГГГ ЦЦЦ.
4) Фрагмент белка: лиз–фен–гли−про

ЭПИЛОГ.

Очень надеюсь, что эта статья поможет Вам разобраться в этой теме. Оставляйте свои комментарии, ставьте лайки и обязательно задавайте вопросы :)

Читайте также: