Хранение информации можно осуществлять

Обновлено: 02.07.2024

Взаимосвязь процессов хранения, обработки и передачи информации, виды информационных носителей, способы обработки информации, виды источников и приемников информации, каналы связи, их виды и способы защиты от шума, единица измерения скорости передачи информации, пропускная способность канала связи

Процессы хранения, обработки и передачи информации являются основными информационными процессами. В разных сочетаниях они присутствуют в получении, поиске, защите, кодировании и других информационных процессах. Рассмотрим хранение, обработку и передачу информации на примере действий школьника, которые он выполняет с информацией при решении задачи.

Опишем информационную деятельность школьника по решению задачи в виде последовательности информационных процессов. Условие задачи (информация) хранится в учебнике. Посредством глаз происходит передача информации из учебника в собственную память школьника, в которой информация хранится. В процессе решения задачи мозг школьника выполняет обработку информации. Полученный результат хранится в памяти школьника. Передача результата — новой информации — происходит с помощью руки школьника посредством записи в тетради. Результат решения задачи хранится в тетради школьника.

Таким образом (рис. 9), можно выделить процессы хранения информации (в памяти человека, на бумаге, диске, аудио- или видеокассете и т. п.), передачи информации (с помощью органов чувств, речи и двигательной системы человека) и обработки информации (в клетках головного мозга человека).

Информационные процессы взаимосвязаны. Например, обработка и передача информации невозможны без ее хранения, а для сохранения обработанной информации ее необходимо передать. Рассмотрим каждый информационный процесс более подробно.


Хранение информации является информационным процессом, в ходе которого информация остается неизменной во времени и пространстве.

В примере о школьнике были рассмотрены такие носители информации, как бумага учебника и тетради (материальный предмет), биологическая память человека (вещество). При получении школьником визуальной информации носителем информации являлся отраженный от бумаги свет (волна).

Выделяют два вида информационных носителей: внутренние и внешние. Внутренние носители (например, биологическая память человека) обладают быстротой и оперативностью воспроиз ведения хранимой информации. Внешние носители (например, бумага, магнитные и оптические диски) более надежны, могут хранить большие объемы информации. Их используют для долговременного хранения информации.

Обработка информации является информационным процессом, в ходе которого информация изменяется содержательно или по форме.

Обработку информации осуществляет исполнитель по определенным правилам. Исполнителем может быть человек, коллектив* животное, машина.

Обрабатываемая информация хранится во внутренней памяти исполнителя. В результате обработки информации исполнителем из исходной информации получается содержательно новая информация или информация, представленная в другой форме (рис. 10).


Вернемся к рассмотренному примеру о школьнике, решившем задачу. Школьник, который являлся исполнителем, получил исходную информацию в виде условия задачи, обработал информацию в соответствии с определенными правилами (например, правилами решения математических задач) и получил новую информацию в виде искомого результата. В процессе обработки информация хранилась в памяти школьника, которая является внутренней памятью человека.

Вид обрабатываемой информации может быть различным, и правила обработки могут быть разными. Автоматизировать процесс обработки можно лишь в том случае, когда информация представлена специальным образом, а правила обработки четко определены.

Передача информации является информационным процессом, в ходе которого информация переносится с одного информационного носителя на другой.

Процесс передачи информации, как ее хранение и обработка, также невозможен без носителя информации. В примере о школьнике в тот момент, когда он читает условие задачи, информация передается с бумаги (с внешнего информационного носителя) в биологическую память школьника (на внутренний информационный носитель). Причем процесс передачи информации происходит с помощью отраженного от бумаги света — волны, которая является носителем информации.

Процесс передачи информации происходит между источником информации, который ее передает, и приемником информации, который ее принимает. Например, книга является источником информации для читающего ее человека, а читающий книгу человек — приемником информации. Передача информации от источника к приемнику осуществляется по каналу связи (рис.11). Каналом связи могут быть воздух, вода, металлические и оптоволоконные провода.


Между источником и приемником информации может существовать обратная связь . В ответ на полученную информацию приемник может передавать информацию источнику. Если источник является одновременно и приемником информации, а приемник является источником, то такой процесс передачи информации называется обменом информацией.

В качестве примера рассмотрим устный ответ ученика учите лю на уроке. В этом случае источником информации являете! ученик, а приемником информации — учитель. Источник и приемник информации имеют носители информации — биологиче скую память. В процессе ответа ученика учителю происходи1: передача информации из памяти ученика в память учителя Каналом связи между учеником и учителем является воздух а процесс передачи информации осуществляется с помощью носителя информации— акустической волны. Если учитель ш только слушает, но и корректирует ответ ученика, а ученик учитывает замечания учителя, то между учителем и учеником происходит обмен информацией.

Информация передается по каналу связи с определенной скоростью, которая измеряется количеством передаваемой информации за единицу времени (бит/с). Реальная скорость передач* информации не может быть больше максимально возможно* скорости передачи информации по данному каналу связи, которая называется пропускной способностью канала связи и зависит от его физических свойств.

Пропускная способность канала связи — максимально возможная скорость передачи информации по данному каналу связи.


Кодирование и декодирование может осуществляться как живым существом (например, человеком, животным), так и техни ческим устройством (например, компьютером, электронным переводчиком).

В процессе передачи информации возможны искажения или потери информации под воздействием помех, которые называются шумом. Шум возникает из-за плохого качества каналов связи или их незащищенности. Существуют разные способы защиты от шума, например техническая защита каналов связи или многократная передача информации.

Например, из-за шума улицы, доносящегося из открытого окна, ученик может не расслышать часть передаваемой учителем звуковой информации. Для того чтобы ученик услышал объяснение учителя без искажений, можно заранее закрыть окно или попросить учителя повторить сказанное.

Сигнал может быть непрерывным или дискретным. Непрерывный сигнал плавно меняет свои параметры во времени. Примером непрерывного сигнала являются изменения атмосферного давления, температуры воздуха, высоты Солнца над горизонтом. Дискретный сигнал скачкообразно меняет свои параметры и принимает конечное число значений в конечном числе моментов времени. Сигналы, представленные в виде отдельных знаков, являются дискретными. Например, сигналы азбуки Морзе, сигналы, служащие для передачи текстовой и числовой информации, — это дискретные сигналы. Поскольку каждому отдельному значению дискретного сигнала можно поставить в соответствие определенное число, то дискретные сигналы иногда называют цифровыми.

Сигналы одного вида могут быть преобразованы в сигналы другого вида. Например, график функции (непрерывный сиг нал) может быть представлен в виде таблицы отдельных значений (дискретный сигнал). И наоборот, зная значения функции для разных значений аргументов, можно построить график функции по точкам. Звучащую музыку, которая передается непрерывным сигналом, можно представить в виде дискретной нотной записи. И наоборот, по дискретным нотам можно сыграть непрерывное музыкальное произведение. Во многих случаях преобразования одного вида сигнала в другой могут приводить к потере части информации.

Существуют технические устройства, которые работают с непрерывными сигналами (например, ртутный термометр, микрофон, магнитофон), и технические устройства, работающие с дискретными сигналами (например, проигрыватель для компакт-дисков, цифровой фотоаппарат, сотовый телефон). Компьютер может работать как с непрерывными, так и дискретными сигналами.

Данные – это самое главное для обычных пользователей и современного бизнеса. Если в системе ПК возникнет сбой, необходимо иметь возможность восстановить личные и рабочие файлы. Поэтому важно хранить информацию вне компьютера. При этом следует убедиться, что будет легко получить доступ к этим файлам и управлять ими.

Хранение – ключевой компонент цифровых устройств, поскольку пользователи и компании привыкли полагаться на него для сохранения информации, начиная личными фотографиями и заканчивая важными для бизнеса документами.

Технология хранения со временем улучшается. Мы начали с мэйнфреймов, а теперь можно записывать все на быстрые SSD.

Как работает хранилище



Требования к емкости определяют, сколько хранилища необходимо для запуска приложения, набора приложений или наборов данных. Требования к емкости учитывают типы данных. Например, для простых документов может потребоваться емкость в килобайтах, в то время как файлы с большим количеством графики могут занимать мегабайты, а видеофайлы – гигабайты.

Локальное хранилище


Это традиционный метод. При этом компании будут сами управлять серверами и владеть ими. У предприятий достаточно денег, чтобы построить собственный центр обработки данных. Однако у большинства из них есть выделенная комната, где они могут хранить свои серверы.


Если данные хранятся на своем внутреннем сервере, необходимо создать и поддерживать свою IT-инфраструктуру. Однако также придется вложить много денег в создание этой инфраструктуры. Нужно иметь дело с расходами на содержание центра обработки данных. Если оборудование старое, то необходимо его заменить. При этом следует регулярно обновлять программное обеспечение, регулировать протоколы доступа.

Некоторые компании хотят иметь полный контроль над своими ресурсами и файлами. Таким образом, стоит подумать о создании собственного дата-центра.



Облачное хранилище

Кроме того, партнеры могут получить доступ к папкам из любой точки мира. Это очень важно, поскольку большинство людей сейчас работают удаленно.

Еще один вариант – комбинировать облачные технологии с периферийными. Это поможет собрать больше данных и управлять ими, расширить охват своей сети, не покупая новое сетевое оборудование.



Типы устройств


Когда дело доходит до физического хранилища, рекомендуется использовать различные типы устройств. Каждое устройство предлагает несколько разные преимущества и недостатки с точки зрения надежности и производительности, поэтому важно понимать, как каждое из них работает, как они могут дополнять друг друга.

HDD, или жесткие диски


Самое известное запоминающее устройство, доступное на рынке, – жесткий диск. На HDD информация будет храниться на оптическом и круглом диске. Данные считываются и записываются с помощью сенсорного рычага. Этот принцип очень похож на компакт-диск или проигрыватель. Если нужна более высокая скорость передачи данных, то можно увеличить вращение диска. Таким образом, HDD будет предлагать лучшую производительность.

Однако на самом деле эта скорость ограничена вращением диска. Большинство жестких дисков предлагают до 7000 об/мин. Если использовать дорогие HDD, скорость может достигать 15000 об/мин. Срок их службы – около 3-5 лет. Однако они дешевле по сравнению с другими устройствами.



SSD, или твердотельные накопители


Твердотельные накопители отличаются от HDD, поскольку у них нет вращающихся или движущихся частей. Эти диски используют флэш-память NAND. Твердотельные накопители почти в 4-10 раз быстрее жестких дисков. Они также более долговечны.

Однако SSD дороже по сравнению с HDD. Каждый блок памяти может хранить ограниченные данные, считаются ненадежными для резервных копий.



Ленточные накопители


Самая старая форма приводов, доступных на рынке. Ленточные накопители в основном используются компаниями, которые хранят большой объем архивных файлов, когда не нужно быстро получать к ним доступ. Жизненный цикл большинства цифровых ленточных накопителей составляет более 30 лет. Кроме того, не нужно беспокоиться о его поддержании. Это идеальное решение для резервного копирования.



Пятимерное (5D) хранилище


Представляет собой новую разработку, где используются диски из плавленого кварца, которые могут кодировать данные в трех стандартных измерениях (ширина, длина, глубина) и двух оптических измерениях. Последнее достигается изменением поляризации и интенсивности лазерного света в процессе записи. Это позволяет небольшим стеклянным дискам 5D хранить 360 ТБ. Диски 5D невероятно долговечны и теоретически могут прожить миллиарды лет при комнатной температуре.

Но в качестве экспериментальной технологии 5D по-прежнему не является рентабельным или практичным способом для хранения рабочих и личных файлов. Возникают вопросы о том, сможет ли кварцевый состав поддерживать несколько записей, не говоря уже о том, какое оборудование потребуется для чтения закодированной информации.

Тем не менее, технология является многообещающей в качестве будущего долгосрочного архивного решения для хранения данных благодаря надежности и доступной памяти.



Корпоративные сети и серверная флэш-память


Поставщики корпоративных хранилищ предоставляют интегрированные системы NAS, которые помогают собирать большие объемы информации и управлять ими. Аппаратное обеспечение включает в себя массивы или серверы хранения, оснащенные жесткими дисками, флэш-накопителями или их гибридной комбинацией, а также программное обеспечение для предоставления услуг обработки данных на основе массивов.



С 2011 года все большее число предприятий внедряют массивы all-flash, оснащенные только твердотельными накопителями на базе флэш-памяти NAND, в качестве дополнения или замены дисковых массивов.

В отличие от дисков, устройства флэш-памяти не полагаются на движущиеся механические части, что обеспечивает более быстрый доступ к информации и меньшую задержку. Флэш-память является энергонезависимой, что позволяет информации сохраняться в памяти, даже если система теряет питание. При этом для дисковых систем требуется встроенная резервная батарея или конденсаторы.

Но флэш-память еще не достигла уровня выносливости, эквивалентного диску, что привело к созданию гибридных массивов, объединяющих оба типа носителей.

Существует 3 основных варианта сетевых систем хранения. В своей простейшей конфигурации хранилище с прямым подключением (DAS) включает внутренний жесткий диск отдельного компьютера. На предприятии DAS может быть кластером дисков на сервере или группой внешних дисков, которые подключаются непосредственно к серверу через интерфейс малых компьютерных систем (SCSI), последовательный интерфейс SCSI (SAS), волоконный канал (FC) или Интернет.

NAS – это архитектура, в которой несколько файловых узлов совместно используются пользователями обычно через подключение к локальной сети (LAN) на основе Ethernet. Преимущество NAS в том, что файловым серверам не требуется полнофункциональная операционная система корпоративного хранилища. Устройства NAS управляются с помощью служебной программы на основе браузера, и каждому узлу в сети назначается уникальный IP-адрес.



С горизонтально масштабируемым NAS тесно связано хранилище объектов, которое устраняет необходимость в файловой системе. Каждый объект представлен уникальным идентификатором. Все объекты представлены в едином плоском пространстве имен.

Сеть хранения данных (SAN) может быть спроектирована для охвата нескольких местоположений дата-центров, которым требуется высокопроизводительное блочное хранилище. В среде SAN блочные устройства воспринимаются хостом как локально подключенное хранилище. Каждый сервер в сети может получить доступ к общему хранилищу, как если бы это был диск с прямым подключением.



Достижения в области флэш-памяти NAND в сочетании с падением цен в последние годы проложили путь к программно-определяемым хранилищам. Используя эту конфигурацию, предприятие устанавливает твердотельные накопители по стандартной цене на сервер на базе x86, используя стороннее ПО или собственный открытый исходный код для управления хранилищем.

Энергонезависимая память Express (NVMe) – это развивающийся отраслевой протокол для флэш-памяти. Отраслевые обозреватели ожидают, что NVMe станет стандартом для флэш-хранилищ. NVMe позволит приложениям напрямую взаимодействовать с центральным процессором (ЦП) через каналы связи PCIe, минуя наборы команд SCSI, передаваемые на сетевой адаптер главной шины. NVMe-oF предназначен для ускорения передачи данных между хост-компьютером и целевой флэш-памятью с использованием установленного сетевого подключения Ethernet, FC или InfiniBand.



Энергонезависимый двухрядный модуль памяти (NVDIMM) представляет собой гибридную память NAND и DRAM со встроенным резервным питанием, который подключается к стандартному слоту DIMM на шине памяти. Модули NVDIMM используют только флэш-память для резервного копирования, выполняя обычные вычисления в DRAM.



NVDIMM помещает флэш-память ближе к материнской плате, предполагая, что производитель компьютера модифицировал сервер и разработал базовые драйверы системы ввода-вывода (BIOS) для распознавания устройства. Модули NVDIMM – это способ расширить системную память или добавить высокопроизводительное хранилище, а не увеличить емкость. Текущие модули NVDIMM на рынке достигают максимум 32 ГБ, но плотность в форм-факторе увеличилась с 8 ГБ до 16 ГБ всего за несколько лет.

В современном мире информация считается одним из ключевых элементов развития общества. Она имеет смысл как на глобальном уровне, так и более локализованно. Благодаря информации человечество развивается, становится богаче в материальном и духовном плане. Но любые сведения быстро накапливаются, и человеческая память просто не может выдержать такого количества. Существуют разные способы хранения информации запоминающего типа. Благодаря им возможно быстрое воспроизведение и сортировка данных, размещение по категориям.

Хранение информации - способы, виды и свойства

История развития

С древних времён человечество пыталось запомнить данные и передать их будущим поколениям. Сначала впечатления об окружающем мире первобытные люди рисовали на камнях в пещерах, где жили, потом в процессе эволюции появилась письменность. Этот фактор стал прототипом современных информационных хранилищ.

Количество исписанных листов становилось всё больше, информация накапливалась с каждым днём, проводились исследования, открытия, человечество пыталось найти ответы на главные вопросы. Это привело к научно-техническому прогрессу и развитию информационных технологий. Вместо исписанных тетрадей и потёртых зачитанных книг появились первые электронные носители, позволяющие хранить ведомости, фотографии и видеофайлы в виде цифрового кода, записанного на носитель.

Хранение информации - способы, виды и свойства

Для считывания данных использовалось специальное устройство, которое со временем только совершенствовалось, увеличивая возможности и место хранения.

Если раньше данные хранились на дискетах, дисках, в памяти компьютера, то сейчас облачное хранение позволяет избавить от ненужных элементов и держать всю информацию на специальных серверах, доступ к которым возможен в любую секунду. Цифровой вид не только уменьшает место хранения, но и помогает быстро провести категоризацию, разместить нужные файлы по отдельным папкам.

Если говорит кратко, то, благодаря развитию информационных технологий, стало возможным хранение большого объёма данных без использования материальных носителей. Конечно, это не отменяет блокноты и тетради, но качественно уменьшает их количество и сужает сферу использования.

Благодаря новым способам хранения данных увеличивается и срок размещения информации на разных платформах.

Магнитные и оптические носители

Магнитная запись была изобретена в XIX веке и первоначально использовалась только для хранения аудиофайлов. Первым носителем была стальная проволока диаметром около 1 мм. Позже стала использоваться стальная катаная лента.

Хранение информации - способы, виды и свойства

К сожалению, качественные характеристики были недостаточными для частого использования, поэтому учёные начали искать альтернативу. Для записи 14-часовой беседы пришлось использовать примерно 100 кг проволоки, которая имела довольно большую протяжность.

Магнитные носители не только были неудобными в использовании, но и создавали дополнительные трудности в процессе хранения, ведь окружающие факторы могли нарушить качество или даже испортить ленты. В 20-х годах появилась магнитная лента на двух основах:

  • Бумажная.
  • Лавсановая. На поверхность наносится тонкий слой специального порошка, что защищает ленту и делает качество записи намного лучше.

Вторая половина ХХ века принесла много изменений. Теперь, кроме звука, на ленту стало можно переносить изображения. Это было первым шагом на пути к появлению видео. Дальше технологии развивались быстро, начали выпускаться видеокамеры и видеомагнитофоны, благодаря которым можно было пересматривать первые фильмы — сначала чёрно-белые, а потом и в цветном формате. В рефератах хранение информации описывается как технический процесс, который начал формироваться в ХІХ веке и продолжает совершенствоваться по сегодняшний день.

Хранение информации - способы, виды и свойства

На смену магнитному пришёл лазерный тип нанесения информации на поверхность носителя. Был изобретён квантовый генератор, с помощью которого и происходила обработка информации для записи. Этот метод повысил плотность записи, благодаря чему диски имеют больший информационный объем, чем другие носители.

Во второй половине 1990-х годов появились универсальные цифровые DVD-диски, благодаря которым повысился объем записи.

Диски занимали немного места, но из-за чувствительной поверхности, которая могла повредиться или поцарапаться, их использование перестало быть практичным. Современные информационные технологии предложили новый метод хранения, без носителя.

Виды цифровой памяти

Способы хранения информации в информатике постоянно совершенствуются, открывая для пользователей новые возможности. Запоминающие устройства для хранения используют разные методы. Стандартным вариантом ещё несколько лет назад были архивы, благодаря которым можно было не только скрыть нужные файлы, но и сжать их обычный размер, тем самым увеличив общее место хранения. Что касается цифровой памяти, то она может быть двух видов:

Хранение информации - способы, виды и свойства

  • Внешняя. К этому типу относятся винчестер, карта памяти и компакт-диск. Последний сейчас практически не используется, его альтернативой стали флеш-карты. Благодаря такой замене резко уменьшилось количество использования дисков, что благоприятно повлияло на экологию. А также код информации часто нарушался из-за повреждений на дисках, поэтому флеш формат более подходящий.
  • Внутренняя. Сюда входят оперативные варианты и память кэша.

До конца XX века эти типы хранения считались единственными. Позже появился способ получше, благодаря которому доступ к данным стал возможным в любое время и с любого подходящего для этого цифрового устройства. В рефератах на тему хранения информации отдельная тема посвящена интернету. Во Всемирной паутине можно хранить любое количество данных, используя при этом разные варианты облачных хранилищ.

Хранение информации - способы, виды и свойства

В последние годы учёные активно работают над созданием специальных дисков, которые смогут хранить на себе достаточное количество информации. Используемые в процессе нанотехнологии работают на уровне атомов и молекул. Одно средство для записи данных, созданное по такой технологии, сможет заменить тысячи дисков, а места на нём должно хватить, чтобы записать каждую секунду человеческой жизни.

Хотя это и звучит как фрагмент фантастического фильма, на самом деле человечество стремительно движется к тому, чтобы создать универсальное хранилище для всей информации.

Использование интернета

Максимально комфортный и доступный для всех способ хранения информации, предоставляющий бесплатные хранилища для данных, используется во всём мире. Использовать интернет можно на любых устройствах, поддерживающих подключение к сети. В докладах и рефератах хранение информации представлено несколькими способами, наиболее эффективный из которых именно интернет.

Чтобы важные ведомости были всегда в зоне доступа, специалисты советуют сделать несколько копий и разместить их в хранилищах и на материальных носителях. Сбои программ, поломки могут навредить информации, поэтому, чтобы не потерять самое важное, необходимо придерживаться простых советов:

Хранение информации - способы, виды и свойства

Развитие информационных технологий в последнее время занимает основную часть работы учёных. Создаются новые варианты хранения информации, проводятся исследования разных нанотехнологических устройств, способных записывать и передавать большие объёмы данных.

Наше время часто называют информационным веком. Однако информация была критически важна для рода человеческого на протяжении всего его существования. Человек никогда не был самым быстрым, самым сильным и выносливым животным. Своим положением в пищевой цепи мы обязаны двум вещам: социальности и способности передавать информацию более чем через одно поколение.



То, как информация хранилась и распространялась сквозь века, продолжает оставаться буквально вопросом жизни и смерти: от выживания племени и сохранения рецептов традиционной медицины до выживания вида и обработки сложных климатических моделей.

Посмотрите на инфографику (кликабельна для просмотра в полной версии). Она отображает эволюцию устройств хранения данных, и масштабы действительно впечатляют. Однако эта картинка далека от совершенства — она охватывает каких-то несколько десятилетий истории человечества, уже живущего в информационном обществе. А между тем данные накапливались, транслировались и хранились с того момента, откуда нам известна история человечества. Сперва это была обычная человеческая память, а в недалёком будущем мы уже ждём хранения данных в голографических слоях и квантовых системах. На Хабре уже неоднократно писали про историю магнитных накопителей, перфокарты и диски размером с дом. Но ещё ни разу не было проделано путешествие в самое начало, когда не было железных технологий и понятия данных, но были биологические и социальные системы, которые научились накапливать, сохранять, транслировать информацию. Попробуем сегодня прокрутить всю историю в рамках одного поста.



Источник изображения: Flickr

До изобретения письменности



Боян

От клинописи до печатного станка



Глиняная табличка с клинописью

Однако, с новыми преимуществами пришли новые проблемы: все, что написано на материалах органического происхождения имеет свойство разлагаться, выцветать, да и просто гореть. В эпоху от темных веков вплоть до изобретения печатного пресса большим и важным делом было копирование книг: буквальное переписывание набело, буква за буквой. Если представить сложность и трудоемкость этого процесса, легко понять, почему чтение и письмо оставались привилегией очень узкой прослойки монашества и знатных людей. Однако в середине пятнадцатого века произошло то, что можно назвать Первой Информационной Революцией.

От Гутенберга до лампы

Попытки упростить и ускорить набор текста с помощью комплектов заранее отлитых словоформ или букв и ручного пресса предпринимали еще в Китае в 11 веке. Почему же мы мало знаем об этом и привыкли считать родиной печати Европу? Распространению наборной печати в Китае помешала их собственная сложная письменность. Производство литер для полноценной печати на китайском было слишком трудоемким.

Благодаря Гутенбергу же, у книг появилось понятие экземпляра. Библия Гутенберга была отпечатана 180 раз. 180 копий текста, и каждая копия повышает вероятность, что пожары, наводнения, ленивые переписчики, голодные грызуны не будут помехой для будущих поколений читателей.



Печатный станок Гутенберга

Ручной пресс и ручной подбор литер, однако, не являются, конечно, оптимальным по скорости и трудозатратам процессом. С каждым столетием человеческое общество стремилось не только найти способ сохранить информацию, но и распространить ее как можно более широкому кругу лиц. С развитием технологий, эволюционировала как печать, так и производство копий.

Ротационная печатная машина была изобретена в конце девятнадцатого века, и ее вариации используются вплоть до сегодняшнего дня. Эти махины, с непрерывно вращающимися валами, на которых закреплены печатные формы, были квинтэссенцией индустриального подхода и символизировали очень важный этап в информационном развитии человечества: информация стала массовой, благодаря газетам, листовкам и подешевевшим книгам.

Массовость, однако, не всегда идет на пользу конкретному кусочку информации. Основной носитель, бумага и чернила, все так же подвержены износу, ветхости, утере. Библиотеки, полные книг по всем возможным областям человеческих знаний, становились все более объемны, занимая огромные пространства и требуя все больше ресурсов для своего обслуживания, каталогизации и поиска.

Очередной сдвиг парадигмы в сфере хранения информации произошел после изобретения фотопроцесса. Нескольким инженерам пришла в голову светлая мысль, что миниатюрные фотокопии технических документов, статей и даже книг могут продлить исходникам жизнь и сократить необходимое для их хранения место. Получившиеся в результате подобного мыслительного процесса микрофильмы (миниатюрные фотографии и оборудование для их просмотра) вошли в обиход в финансовых, технических и научных кругах в 20-х годах двадцатого века. У микрофильма много плюсов — этот процесс сочетает в себе легкость копирования и долговечность. Казалось, что развитие способов хранения информации достигло своего апогея.



Микроплёнка, используется до сих пор

От перфокарт и магнитных лент к современным ЦОДам

Инженерные умы пытались придумать универсальный метод обработки и хранения информации еще с 17-го века. Блез Паскаль, в частности, заметил, что если вести вычисления в двоичной системе счисления, то математические закономерности позволяют привести решения задач в такой вид, который делает возможным создание универсальной вычислительной машины. Его мечта о такой машине осталась лишь красивой теорией, однако, спустя века, в середине 20-го века, идеи Паскаля воплотились в железе и породили новую информационную революцию. Некоторые считают, что она все еще продолжается.


Перфокарта



Один из первых жёстких дисков IBM, 5 МБ

У магнитных лент и систем, связанных с ними, есть один серьезный недостаток — это последовательный доступ к данным. То есть, чем дальше запись находится от начала ленты, тем больше времени потребуется для того, чтобы ее прочитать.

Тогда же из космической и медицинской отраслей начали активно проникать технологии резервирования. Конечно, копировать и размножать информацию с тем, чтобы защитить ее в случае уничтожения оригинала люди умели давно, но именно дублирование не только носителей данных, но и различных инженерных систем, а также необходимость предусматривать точки отказала и возможных человеческих ошибок отличает серьезные ЦОДы. Например, ЦОД, принадлежащий к Tier I будет лишь ограниченную избыточность хранения данных. В требования к Tier II уже прописано резервирование источников питания и наличие защиты от элементарных человеческих ошибок, а Tier III предусматривает резервирование всех инженерных систем и защиту от несанкционированного проникновения. Наконец, высший уровень надежности ЦОДа, четвертый, требует дополнительное дублирование всех резервных систем и полное отсутствие точек отказа. Кратность резервирования (сколько именно резервных элементов приходится на каждый основной) обычно обозначается буквой M. Со временем требования к кратности резервирования только росли.

Построить ЦОД уровня надежности TIER-III, — это проект, с которым справится только исключительно квалифицированная компания. Такой уровень надежности и доступности означает, что, как инженерные коммуникации, так и системы связи дублированы, и дата-центр имеет право на простой только в количестве около 90 минут в год.

Мы видим, что в IT происходит еще одна смена парадигмы, и связана она с data science. Обработка и хранение больших объемов данных становятся актуальны как никогда. В каком-то смысле, любой бизнес должен быть готов стать немного учеными: вы собираете огромное количество данных о ваших клиентах, обрабатываете их и получаете для себя новую перспективу. Для реализации таких проектов потребуется аренда большого количества мощных серверных машин и эксплуатация будет не самой дешевой. Либо, возможно, ваша внутренняя ИТ-система настолько сложна, что на поддержание ее уходит слишком много ресурсов компании.

Развитие информационных технологий похоже на беспощадно несущийся вперед поезд, не все успевают запрыгнуть в вагон когда им предоставляется возможность. Где-то до сих пор используют бумажные документы, в старых архивах хранятся сотни не оцифрованных микрофильмов, государственные органы могут до сих пор использовать дискеты. Прогресс никогда не бывает линейно-равномерным. Никто не знает, сколько важных вещей мы в результате навсегда потеряли и какое количество часов было потрачено из-за до сих пор не вполне оптимальных процессов. Зато мы в Safedata знаем, как не допустить пустых трат и невосполнимых потерь конкретно в вашем случае.

Читайте также: