Где находится программное обеспечение управляющее загрузкой ос

Обновлено: 27.05.2024

Операционная система (ОС)– это комплекс взаимосвязанных системных программ для организации взаимодействия пользователя с компьютером и выполнения всех других программ. Вычислительная система - взаимосвязанная совокупность аппаратных средств вычислительной техники и программного обеспечения, предназначенная для обработки информации) и удобства работы с ней.

Назначение операционных систем

Назначение ОС - организация вычислительного процесса в вычислительной системе, рациональное распределение вычислительных ресурсов между отдельными решаемыми задачами; предоставление пользователям многочисленных сервисных средств, облегчающих процесс программирования и отладки задач. Операционная система исполняет роль своеобразного интерфейса ( Интерфейс - совокупность аппаратуры и программных средств, необходимых для подключения периферийных устройств к ПЭВМ) между пользователем и ВС, т.е. ОС предоставляет пользователю виртуальную ВС.

Это означает, что ОС в значительной степени формирует у пользователя представление о возможностях ВС, удобстве работы с ней, ее пропускной способности. Различные ОС на одних и тех же технических средствах могут предоставить пользователю различные возможности для организации вычислительного процесса или автоматизированной обработки данных.

ОС относятся к составу системного программного обеспечения и являются основной его частью.

Наиболее популярные операционные системы:

  • MS DOS
  • Nicrosoft Windows
  • Mac OS
  • OS/2
  • UNIX
  • Linux.

Основные функции ОС:

  • управление устройствами компьютера (ресурсами)
    - согласованная работа всех аппаратных средств ПК: стандартизованный доступ к периферийным устройствам, управление оперативной памятью и др.
  • управление процессами
    - выполнение программ и их взаимодействие с устройствами компьютера.
  • управление доступом к данным на энергонезависимых носителях
    (таких как жесткий диск, компакт-диск и т.д.), как правило, с помощью файловой системы.
  • ведение файловой структуры
    - создание, изменение, удаление, хранение файлов на носителях
  • пользовательский интерфейс
    - диалог с пользователем.
  • параллельное или псевдопараллельное выполнение задач (многозадачность).
  • взаимодействие между процессами: обмен данными, взаимная синхронизация.
  • защита самой системы, а также пользовательских данных и программ от злонамеренных действий пользователей или приложений.
  • разграничение прав доступа и многопользовательский режим работы (аутентификация, авторизация).

Главные цели операционной системы:

  1. Эффективное использование всех компьютерных ресурсов.
  2. Повышение производительности труда программистов.
  3. Простота, гибкость, эффективность и надежность организации вычислительного процесса.
  4. Обеспечение независимости прикладных программ от аппаратного обеспечения (АО).

Функцией ОС является распределение процессоров, памяти, устройств и данных между процессами, конкурирующими за эти ресурсы. ОС должна управлять всеми ресурсами вычислительной машины таким образом, чтобы обеспечить максимальную эффективность ее функционирования. Критерием эффективности может быть, например, пропускная способность или реактивность системы.

Таким образом, ОС реализует:

  • интерфейс пользователя (команды в MS DOS, UNIX; графический интерфейс в ОС Windows);
  • разделение аппаратных ресурсов между пользователями (в многопользовательской и многозадачной ОС);
  • работу в локальных и глобальных сетях;
  • возможность работы с общими данными в режиме коллективного пользования;
  • планирование доступа пользователей к общим ресурсам;
  • эффективное выполнение операций ввода-вывода;
  • восстановление данных и вычислительного процесса в случае ошибок.

Для реализации управления ресурсами разные ОС используют различные алгоритмы, что, в конечном счете, и определяет их облик в целом, включая характеристики производительности, область применения и даже пользовательский интерфейс. Так, например, алгоритм управления процессором в значительной степени определяет, является ли ОС системой разделения времени, системой пакетной обработки или системой реального времени.

Состав операционной системы

Современные операционные системы имеют сложную структуру, каждый элемент которой выполняет определенные функции по управлению компьютером.

Наиболее общим подходом к структуризации операционной системы является разделение всех ее модулей на две группы:

  • Ядро – это модули, выполняющие основные функции ОС.
  • Вспомогательные модули, выполняющие вспомогательные функции ОС. Одним из определяющих свойств ядра является работа в привилегированном режиме.
  • Планирование заданий.
  • Использование процессора.
  • Обеспечение программ средствами коммуникации и синхронизации.
  • Управление памятью.
  • Управление файловой системой.
  • Управление вводом выводом.
  • Обеспечение безопасности.

Виды интерфейсов пользователя операционных систем

По типу пользовательского интерфейса различают :

  • текстовые (линейные) операционные системы
  • графические операционные системы
  • речевые операционные системы

Пользовательским интерфейсом называется набор приемов взаимодействия пользователя с приложением. Пользовательский интерфейс включает общение пользователя с приложением и язык общения.

Операционные системы


В этой статье я приведу теорию операционных систем сжато. Статья будет полезна для студентов и всех желающих изучить основы администрирования операционных систем.
Так же советую почитать статьи которые я разбираю на практических примерах:

Операционная система

Операционная система — это комплекс взаимосвязанных программ, который взаимодействует как интерфейс между приложениями и пользователями.

Основные функции операционных систем:

  • Предоставление пользователю вместо реальной аппаратуры виртуальной машины с которой удобно работать.
  • Повышение эффективности использования вычислительной системы путем рационального управления ее ресурсами.

Операционная система управляет процессами. Одна из задач операционной системы — распределение ресурсов между процессами, конкурирующими за эти ресурсы.

На пальцах. Допустим есть у нас компьютер с 2 ГБ оперативной памяти. На компьютере установлен антивирус Касперского и MS офис. Например мы работаем только в экселе. Итого что происходит:
1. Запускается ОС, запускаются процессы необходимые для стабильной работы ОС.
2. Запускается процесс Касперского (у меня он называется AVP21.2 Kaspersky Anti-Virus Service).
3. Вы запускаете эксель, он запускает свой процесс.
4. Вся оперативная память начинает забиваться так как антивирусу и экселю нужны ресурсы, а часть ресурсов уже занята процессами ОС.
5. Возникает конкуренция за ресурсы.

Так вот, операционная система регулирует эту конкуренцию. При этом нужно достичь максимальной производительности. Если в двух словах, не вдаваясь в подробности.

Понятие процесса: процесс это динамический объект который возникает в операционной системе после запуска программы, он содержит требования к ресурсам.

Контекст процесса — информация о текущем состоянии процесса, которая включает описание:

  • свойств процесса,
  • открытых файлов,
  • занимаемых участков оперативной памяти,
  • состояния регистров процесса,
  • и иные описания.

Задачи операционной системы при управлении ресурсами

  • Планирование ресурса.
  • Раздача ресурсов.
  • Отслеживание состояния и учет ресурсов.
  • Решение конфликтов между ресурсами.

Операционная система определяет какому процессу и в каком количестве нужно выделить определенный ресурс. После выделения она ведет учет использования ресурсов. При необходимости решает конфликты. В самом простом случае ресурсы распределяется по приоритетам установленным по умолчанию.

Пользователь взаимодействует с операционной системой через пользовательский интерфейс (UI — user interface).

Пользовательские интерфейсы бывают:
1. CLI — интерфейс командной строки.
2. GUI — графический пользовательский интерфейс.

Пример интерфейса командной строки.

Маршрутизация в Windows

Пример графического пользовательского интерфейса.

Выбор типа динамического обновления DNS-зоны

Подсистема управления памятью

Подсистема управления памятью выполняет следующие задачи:

  1. Ведет учет занятой и свободной оперативной памяти.
  2. Выделяет память процессам и освобождает память при завершении процесса.
  3. Настраивает адресно-зависимые части кодов процесса на физические адреса выделенной памяти.
  4. Защищает память выделенную определенному процессу.
  5. Работает с виртуальной памятью.

Виртуальная память это участок памяти на жестком диске который дополняет оперативную память в случае ее нехватки.

Использование виртуальной памяти позволяет работать с процессорами адресное пространство которых больше, чем оперативная память и увеличивать количество выполняемых одновременно процессов.

Из-за этого довольно сильно тормозит Windows 10 без SSD, так как операционная система часто использует виртуальную память, а скорости обычного HDD диска не хватает для быстрой реакции, поэтому начинаются тормоза.

По сути подсистема управления памятью проверяет есть ли свадебная оперативная память, если да — выделяет, если нет — задействует виртуальную память.

Подсистема управления файлами

Файловая система позволяет работать не напрямую с данными на носителях, а с файлами.

Файл, по сути, это некоторая последовательность байт которая имеет определенное имя. Тесть виртуальный объект.

Задачи файловой системы:

  1. Предоставление наборов данных в виде иерархической структуры файлов и каталогов.
  2. Преобразование символьных имен файлов в физические адреса данных на диске.
  3. Организация совместного доступа к файлам.
  4. Защита файлов от несанкционированного доступа.

Подсистема управления процессами

Позволяет работать процессам с ресурсами.

  1. Производит генерацию и хранение данных о потребностях процесса в ресурсах и о фактически выделенных ресурсах.
  2. Выделяет оперативную память, процессорное время и другие ресурсы для работы процесса.
  3. Поддерживает очередь заявок процессов на ресурсы.
  1. Защита ресурсов, которые были выделены процессу, от вмешательства других процессов.
  2. Организация совместного доступа к ресурсам.
  3. Синхронизация работы процессов при совместном доступе к ресурсам.
  4. Реализация межпроцессорного взаимодействия.

Управление памятью

Рассмотрим управление памятью в операционных системах подробнее.

Виртуальное адресное пространство процесса

  • Символьные имена — идентификаторы переменных и команд в программе, присваиваемые программистом.
  • Виртуальные адреса — условные адреса, присваиваемые транслятором.
  • Физические адреса — номера ячеек оперативной памяти, в которых находятся переменные и команды.
  1. Метки операторов заменяют для программиста адреса, по которым команды находятся в памяти.
  2. Имена переменных заменяют адреса, по которым данные находятся в памяти.
  3. Имя программы заменяет адрес, по которому первая команда программы находится в памяти.

Физическая память

Физическая память представляет собой упорядоченное множество ячеек реально существующей оперативной памяти, каждая из которых пронумерована, и к ней можно обратиться, используя порядковый номер.

Количество ячеек физической памяти ограничено и фиксировано.

Виртуальное адресное пространство

Совокупностью виртуальных адресов процесса называют виртуальным адресным пространством.

У процессов одинаков диапазон виртуальных адресов, но виртуальные пространства различны, так как отображаются на разные физические адреса.

Максимально возможным виртуальным адресным пространством считают потенциально возможный размер виртуального адресного пространства процесса, который определяется архитектурой компьютера.

Как правило, изначальное неизвестно количество памяти, которое потребуется программе для работы. Поэтому на каждую программу выделяется максимально возможное адресное пространство.

Назначенным виртуальным адресным пространством называют размер виртуального адресного пространства, который необходим процессу для работы и реально используется в текущий момент.

Размер назначенного адресного пространства может меняться во время выполнения процесса.

Отображение виртуального адресного пространства на физическую память

Разные процессы в операционной системе имеют разные адреса виртуального пространства, которые преобразуются определенным образом в физические. Подробно механизм преобразования я не буду рассматривать, так как скорее всего не политься у меня объяснить его простым языком.

Память бывает разделяемая и неразделяемая.

Разделяемая память это память, которая видна более чем одному процессу или память, которая присутствует в виртуальном адресном пространстве более чем одного процесса.

Неразделяемая память это закрытая область для хранения собственных данных процесса.

На рисунке выше разделимый участок оперативной памяти отмечен серым цветом.

Для каждого процесса виртуальное адресное пространство делиться на две части:

  1. Системная часть – одинакова для всех процессов и содержит ядро операционной системы и разделяемые различными объектами процессы.
  2. Пользовательская часть – индивидуальна для каждого процесса и содержит коды и данные прикладной программы.

Системная часть разделяется на вытесняемую и не вытесняемую.

По сути: если памяти не хватает, то вытесняемая память переходит из оперативной памяти на жесткий диск. Как я писал ранее это очень любимая тема Windows 10.

Подведем итог. В операционной система подсистема управления памятью решает следующие задачи:

  • Выделяет память процессам и освобождает ее при завершении процесса.
  • Распределяет имеющуюся память между одновременно выполняемыми процессами статически и динамически.
  • Защищает адресное пространство процесса от других процессов.
  • Ведет учет используемой памяти.
  • Преобразует виртуальные адреса в физические.
  • Вытесняет часть данных на жесткий диск и возвращает их обратно.

Допустим, у нас есть три процесса, они находятся в оперативной памяти и занимают ее полностью. Пользователь запускает четвертый процесс, памяти для него не хватает. Операционная система выгружает первый процесс в виртуальную память. Этот самый файл подкачки на жестком диске. Когда оперативная память освобождается, четвертый процесс загружается обратно в нее.

Управление устройствами в операционных системах

Управление устройствами в операционной системе производится с помощью подсистемы управления устройствами ввода-вывода.

  • Организация параллельной работы устройств ввода-вывода и процессора.
  • Согласование кеширования и обмена данными.
  • Разделение устройств между процессами.
  • Обеспечение работоспособности логического пользовательского интерфейса.
  • Поддержка драйверов устройств.
  • Поддержка различных файловых систем.

То есть подсистема отвечает за то, что бы операционная система могла работать с различными устройствами.

Операционная система взаимодействует с подсистемой ввода-вывода с помощью:

Контроллер это блок управления устройством ввода-вывода.

Драйвер это программный модуль, который управляет устройством.

Контроллер получает от драйвера выводимые на устройстве данные и управляющие команды. После окончания выполнения задачи контроллер выполняет прерывание.

Организация параллельной работы устройств ввода-вывода и процессора происходит следующим образом.

Контроллер управляет устройством, он работает независимо от операционной системы в периоды между выдачами команд.

Подсистема ввода-вывода в режиме реального времени планирует и осуществляет запуск и остановку различных драйверов. При этом она учитывает время реакции (обеспечивает приемлемое время, наверное, видели ошибку, если устройство долго не отвечает) драйверов на события контроллера.

Подсистема ввода-вывода согласовывает скорость обмена и кеширования данных с контроллером устройства.

Согласование необходимо из-за того, что скорости обмена контроллеров и оперативной памятью различаются. При согласовании скорость обмена данными сокращается количество операций ввода-вывода, операционная система работает быстрее.

Чтобы согласовать скорости используется буферизация данных и реализуется процесс синхронного доступа считывающего и пишущего потоков к буферу.

Структура подсистемы ввода-вывода

На этом все. Если у вас появились вопросы, задавайте их в комментариях.

Анатолий Бузов

Обучаю HTML, CSS, PHP. Создаю и продвигаю сайты, скрипты и программы. Занимаюсь информационной безопасностью. Рассмотрю различные виды сотрудничества.

Аннотация: Функции операционной системы. Структура операционной системы. Классификация операционных систем. Требования к операционным системам.

Операционная система (operating system ) – комплекс программ, предоставляющий пользователю удобную среду для работы с компьютерным оборудованием.

Операционная система позволяет запускать пользовательские программы; управляет всеми ресурсами компьютерной системы – процессором (процессорами), оперативной памятью, устройствами ввода вывода; обеспечивает долговременное хранение данных в виде файлов на устройствах внешней памяти; предоставляет доступ к компьютерным сетям.

Для более полного понимания роли операционной системы рассмотрим составные компоненты любой вычислительной системы (рис.1.1).

Компоненты вычислительной системы

Все компоненты можно разделить на два больших класса – программы или программное обеспечение ( ПО , software ) и оборудование или аппаратное обеспечение ( hardware ). Программное обеспечение делится на прикладное, инструментальное и системное. Рассмотрим кратко каждый вид ПО .

Цель создания вычислительной системы – решение задач пользователя. Для решения определенного круга задач создается прикладная программа ( приложение , application ). Примерами прикладных программ являются текстовые редакторы и процессоры (Блокнот, Microsoft Word ), графические редакторы ( Paint , Microsoft Visio), электронные таблицы (Microsoft Excel ), системы управления базами данных (Microsoft Access, Microsoft SQL Server ), браузеры ( Internet Explorer) и т. п. Все множество прикладных программ называется прикладным программным обеспечением ( application software ).

Создается программное обеспечение при помощи разнообразных средств программирования (среды разработки, компиляторы, отладчики и т. д.), совокупность которых называется инструментальным программным обеспечением. Представителем инструментального ПО является среда разработки Microsoft Visual Studio .

Основным видом системного программного обеспечения являются операционные системы. Их основная задача – обеспечить интерфейс (способ взаимодействия) между пользователем и приложениями с одной стороны, и аппаратным обеспечением с другой. К системному ПО относятся также системные утилиты – программы, которые выполняют строго определенную функцию по обслуживанию вычислительной системы, например, диагностируют состояние системы , выполняют дефрагментацию файлов на диске, осуществляют сжатие ( архивирование ) данных. Утилиты могут входить в состав операционной системы.

Взаимодействие всех программ с операционной системой осуществляется при помощи системных вызовов ( system calls) – запросов программ на выполнение операционной системой необходимых действий. Набор системных вызовов образует API – Application Programming Interface ( интерфейс прикладного программирования).

Далее рассмотрим, какие функции должны выполнять современные операционные системы.

Функции операционной системы

К основным функциям, выполняемым операционными системами, можно отнести:

  • обеспечение выполнения программ – загрузка программ в память, предоставление программам процессорного времени, обработка системных вызовов;
  • управление оперативной памятью – эффективное выделение памяти программам, учет свободной и занятой памяти;
  • управление внешней памятью – поддержка различных файловых систем;
  • управление вводом-выводом – обеспечение работы с различными периферийными устройствами;
  • предоставление пользовательского интерфейса;
  • обеспечение безопасности – защита информации и других ресурсов системы от несанкционированного использования;
  • организация сетевого взаимодействия.

Структура операционной системы

Перед изучением структуры операционных систем следует рассмотреть режимы работы процессоров.

Современные процессоры имеют минимум два режима работы – привилегированный (supervisor mode) и пользовательский (user mode).

Отличие между ними заключается в том, что в пользовательском режиме недоступны команды процессора, связанные с управлением аппаратным обеспечением, защитой оперативной памяти, переключением режимов работы процессора. В привилегированном режиме процессор может выполнять все возможные команды.

Приложения, выполняемые в пользовательском режиме, не могут напрямую обращаться к адресным пространствам друг друга – только посредством системных вызовов.

Все компоненты операционной системы можно разделить на две группы – работающие в привилегированном режиме и работающие в пользовательском режиме, причем состав этих групп меняется от системы к системе.

Основным компонентом операционной системы является ядро (kernel). Функции ядра могут существенно отличаться в разных системах; но во всех системах ядро работает в привилегированном режиме (который часто называется режим ядра, kernel mode).

Термин "ядро" также используется в разных смыслах. Например, в Windows термин "ядро" (NTOS kernel) обозначает совокупность двух компонентов – исполнительной системы (executive layer) и собственно ядра (kernel layer) [12].

Существует два основных вида ядер – монолитные ядра (monolithic kernel) и микроядра (microkernel). В монолитном ядре реализуются все основные функции операционной системы, и оно является, по сути, единой программой, представляющей собой совокупность процедур [6]. В микроядре остается лишь минимум функций, который должен быть реализован в привилегированном режиме: планирование потоков, обработка прерываний, межпроцессное взаимодействие. Остальные функции операционной системы по управлению приложениями, памятью, безопасностью и пр. реализуются в виде отдельных модулей в пользовательском режиме.

Ядра, которые занимают промежуточные положение между монолитными и микроядрами, называют гибридными (hybrid kernel).

Примеры различных типов ядер:

  • монолитное ядро – MS-DOS, Linux, FreeBSD;
  • микроядро – Mach, Symbian, MINIX 3;
  • гибридное ядро – NetWare, BeOS, Syllable.

Кроме ядра в привилегированном режиме (в большинстве операционных систем) работают драйверы (driver) – программные модули, управляющие устройствами.

В состав операционной системы также входят:

  • системные библиотеки (system DLL – Dynamic Link Library, динамически подключаемая библиотека), преобразующие системные вызовы приложений в системные вызовы ядра;
  • пользовательские оболочки (shell), предоставляющие пользователю интерфейс – удобный способ работы с операционной системой.

Пользовательские оболочки реализуют один из двух основных видов пользовательского интерфейса:

  • текстовый интерфейс (Text User Interface, TUI), другие названия – консольный интерфейс (Console User Interface, CUI), интерфейс командной строки (Command Line Interface, CLI);
  • графический интерфейс (Graphic User Interface, GUI).

Пример реализации текстового интерфейса в Windows – интерпретатор командной строки cmd.exe; пример графического интерфейса – Проводник Windows (explorer.exe).

Классификация операционных систем

Классификацию операционных систем можно осуществлять несколькими способами.

  1. По способу организации вычислений:
    • системы пакетной обработки (batch processing operating systems) – целью является выполнение максимального количества вычислительных задач за единицу времени; при этом из нескольких задач формируется пакет, который обрабатывается системой;
    • системы разделения времени (time-sharing operating systems) – целью является возможность одновременного использования одного компьютера несколькими пользователями; реализуется посредством поочередного предоставления каждому пользователю интервала процессорного времени;
    • системы реального времени (real-time operating systems) – целью является выполнение каждой задачи за строго определённый для данной задачи интервал времени.
  • системы с монолитным ядром (monolithic operating systems);
  • системы с микроядром (microkernel operating systems);
  • системы с гибридным ядром (hybrid operating systems).
  • однозадачные (single-tasking operating systems);
  • многозадачные (multitasking operating systems).
  • однопользовательские (single-user operating systems);
  • многопользовательские (multi-user operating systems).
  • однопроцессорные (uniprocessor operating systems);
  • многопроцессорные (multiprocessor operating systems).
  • локальные (local operating systems) – автономные системы, не предназначенные для работы в компьютерной сети;
  • сетевые (network operating systems) – системы, имеющие компоненты, позволяющие работать с компьютерными сетями.
  • серверные (server operating systems) – операционные системы, предоставляющие доступ к ресурсам сети и управляющие сетевой инфраструктурой;
  • клиентские (client operating systems) – операционные системы, которые могут получать доступ к ресурсам сети.
  • открытые (open-source operating systems) – операционные системы с открытым исходным кодом, доступным для изучения и изменения;
  • проприетарные (proprietary operating systems) – операционные системы, которые имеют конкретного правообладателя; обычно поставляются с закрытым исходным кодом.
  • операционные системы мэйнфреймов – больших компьютеров (mainframe operating systems);
  • операционные системы серверов (server operating systems);
  • операционные системы персональных компьютеров (personal computer operating systems);
  • операционные системы мобильных устройств (mobile operating systems);
  • встроенные операционные системы (embedded operating systems);
  • операционные системы маршрутизаторов (router operating systems).

Требования к операционным системам

Основное требование, предъявляемое к современным операционным системам – выполнение функций, перечисленных выше в параграфе "Функции операционных систем". Кроме этого очевидного требования существуют другие, часто не менее важные [3]:

  • расширяемость – возможность приобретения системой новых функций в процессе эволюции; часто реализуется за счет добавления новых модулей;
  • переносимость – возможность переноса операционной системы на другую аппаратную платформу с минимальными изменениями;
  • совместимость – способность совместной работы; может иметь место совместимость новой версии операционной системы с приложениями, написанными для старой версии, или совместимость разных операционных систем в том смысле, что приложения для одной из этих систем можно запускать на другой и наоборот;
  • надежность – вероятность безотказной работы системы;
  • производительность – способность обеспечивать приемлемые время решения задач и время реакции системы.

Резюме

В этой лекции приведено определение операционной системы, представлены виды программного обеспечения, рассмотрены функции и структура операционной системы. Особое внимание уделено понятию "ядра". Также приведены различные способы классификации операционных систем и требования, предъявляемые к современным операционным системам.

В следующей лекции будет представлен обзор операционных систем Microsoft Windows.

Для поддержания работоспособности и повышения скорости обработки информации используются специализированные программы или системное программное обеспечение компьютера. Правильная работа с этими утилитами позволит избежать попадания техники в сервисный центр, поскольку их услуги далеко не дешевые. Чтобы сэкономить деньги, необходимо знать основную классификацию и назначение, а затем из этого списка выделить только необходимое.

Системное программное обеспечение включает в себя

Общие сведения

Системное программное обеспечение (СПО) — совокупность программ с узкой специализацией, направленной на взаимосвязь между физическими устройствами, управление компьютером, поддержание его в рабочем состоянии. Занимается его разработкой системный программист. Основные функции системного ПО в информатике:

Системное программное обеспечение компьютера

  1. Поддержание эффективной работы какой-либо вычислительной системы.
  2. Разворачивание на компьютере или в сетевом окружении среды для работы прикладного программного обеспечения.
  3. Выполнение фоновых процессов работы с файловой системой, защиты данных от утечки, проверка на наличие вредоносных скриптов и вирусов.
  4. Осуществление диагностики и предотвращения выхода из строя аппаратной части персонального компьютера, ноутбука и другого цифрового устройства.
  5. Взаимосвязь физических устройств и преобразование их в логические.

В первом случае применяются специальные утилиты. Они могут входить в состав самой операционной системы или устанавливаться из других источников. Во втором случае разворачивание осуществляется при помощи операционной системы, т. е. программы-оболочки в которой может работать любое программное обеспечение (ПО).

Третья функция осуществляет работу над элементами файловой системы, т. е. каталогами и файлами. Их можно перемещать в другие места, копировать, удалять, изменять и т. д. Кроме того, существует определенная группа, называемая архиваторами. Последние позволяют значительно уменьшать размеры файлов, подготавливать любую единицу данных (картинок, документов и т. д. ) к рассылке в интернете.

Четвертая функция обеспечивает защиту важной информации от злоумышленников, которые стремятся получить пароли от электронной почты, платежных систем и других важных данных для конкретного пользователя.

Любая операционная система (ОС) работает не с физическим устройством, а с его логическим представлением. Для этого применяется базовая система ввода-вывода (BIOS), обеспечивающая взаимосвязь между компонентами вычислительной системы.

Классификация системных программ

Специалисты в IT-сфере считают, что СПО можно условно разделить на 3 типа. К ним относятся:

  1. Базовое.
  2. Операционные системы.
  3. Сервисные программы (утилиты).

Системное программное обеспечение

Вторая группа — операционные системы. Это специальные программы-оболочки, разворачивающие соответствующую среду для обмена информацией между аппаратной частью компьютера и клиентом. Все команды последнего переводятся на специальный машинный язык, а затем обратно.

Для постоянного поддержания оптимального быстродействия ОС применяются утилиты. Они являются внешним программным обеспечением, хотя некоторые из них входят в состав самой ОС (проверка, дефрагментация диска). Однако специалисты рекомендуют настоятельно не использовать встроенные средства обслуживания системы, а применять только профессиональные.

Чтобы понять принцип работы СПО, необходимо рассмотреть каждый из компонентов более подробнее. Кроме того, понимание всех процессов, происходящих в вычислительной системе, поможет быстро определить неисправность.

Базовое ПО

Основной частью базового ПО является BIOS. Она записывается в специальную микросхему ПЗУ, находящуюся на материнской плате, и выполняет следующие функции:

Системное по

  1. Поддержку аппаратной конфигурации и назначение соответствующих прерываний.
  2. Инициализацию установленного железа и считывание его настроек при включении компьютера.
  3. Передачу управления ОС.

При включении персонального компьютера (ПК) управление передается программе, вшитой в микросхему BIOS. Она выполняет проверку оборудования, установленного на ЭВМ (электронно-вычислительную машину). Каждому компоненту назначается определенное прерывание, по которому и происходит его идентификация в системе.

Программа в микросхеме генерирует импульс для тестового запуска того или иного устройства. Если получен соответствующий двоичный код от тестируемого компонента, значит, последний успешно прошел диагностику. С самого начала тест-сигнал посылается на основные элементы ПК, т. е. микропроцессор (CPU), оперативную память (RAM), видеопроцессор (GPU) и контроллер жесткого диска. Когда одно из основных устройств не прошло тестирование, работа ПК прекращается и выдается соответствующий кодовый сигнал через динамик-пищалку.

Системное программное обеспечение это

Одной из полезных настроек является установка очередности загрузки устройств. Функция необходима для установки порядка загрузки и выбора носителя для ее инсталляции. Специалисты рекомендуют устанавливать носитель с установленной ОС на первое место, а другие отключить.

Операционная система

Это основные критерии, которым должна удовлетворять каждая ОС. Для выбора последней нужно ознакомиться с основными видами и характеристиками.

Виды и характеристики

Для работы на персональном компьютере можно использовать несколько видов ОС, основные характеристики которых существенно отличаются между собой. Они условно могут делиться на 3 группы:

Системное по это

Первая платформа является оптимальным решением для любых ПК и портативных устройств, поскольку отличается не только функциональностью, но и высокими требованиями к безопасности. Для нее практически не пишется опасное вредоносное ПО, данные пользователя надежно защищены. Кроме того, освоить ее довольно просто, поскольку существует множество модификаций с понятным интерфейсом. Для входа в систему предусмотрен пароль, который невозможно обойти.

Самыми ненадежными являются Windows-системы. Для этого вида необходимо подбирать соответствующее ПО для защиты персональной информации, а также от вредоносных программ и взлома со стороны киберпреступников. Последние могут легко получить важные данные об электронных кошельках, а затем их взломать.

Системные программы это

В ОС существует возможность входа по паролю, однако его довольно легко взломать. Распространенной ошибкой новичков при инсталляции Windows является отсутствие пароля на аккаунте администратора, который просто не указывают. В результате этого злоумышленник может получить доступ ко всем данным пользователя, войдя в админскую учетную запись.

Следует отметить, что MAC и LINUX имеют UNIX-ядро, т. е. структуру файловой системы, конфигурацию и модульные процедуры выполнения запросов. Этот подход к архитектуре позволяет существенно увеличить скорость работы, достигнуть высокого уровня безопасности, а также правильно управлять ресурсами при выполнении нескольких процессов.

Драйвера и многозадачность

Следует отметить, что только OC UNIX-платформ обладают многозадачностью. Хотя в некоторых источниках указано, что Windows способна правильно распределять ресурсы при вычислительном процессе. Последнее — ошибочное утверждение, поскольку работа программ выполняется по одному экземпляру с последующим переключением между вычислительными потоками. IT-специалисты называют Windows — ОС с ложной многозадачностью.

Драйвер компьютера

Специальные утилиты

Программы-утилиты чаще всего применяются для Windows-платформ, которые не отличаются стабильностью работы и безопасностью. Для правильного их подбора необходимо кратко ознакомиться с функциями, которые они должны выполнять. По функционалу можно перечислить такие группы утилит:

Утилиты компьютера

  1. Защита от вирусов и другого вредоносного ПО.
  2. Оптимизация файловой системы.
  3. Чистка и дефрагментация реестра.
  4. Удаление ненужных данных.
  5. Настройка системы.
  6. Шифрование данных.
  7. Корректное удаление установленных программ.

К первой группе можно отнести все антивирусы. Для выбора оптимального программного продукта необходимо воспользоваться различными интернет-ресурсами, на которых тестируется соответствующее ПО. Примеры антивирусов, обладающих хорошими характеристиками, являются продукты лаборатории Касперского и Евгения Рошаля (Dr. Web).

Другие типы утилит выбираются по такому же принципу, как и антивирусы. Некоторые программные модули могут включать сразу несколько функций. Например, Advanced System Care состоит из компонентов, отвечающих за безопасность, работу с файловой системой и реестром, а также модуля, отвечающего за корректное удаление программ.

Таким образом, системные программы позволяют не только осуществлять диалог клиента и ЭВМ, а также сохранять важные данные и поддерживать работоспособность вычислительной системы на высоком уровне.

Читайте также: