Что положено в основу классификации почв по гранулометрическому составу

Обновлено: 19.05.2024

Гранулометрический состав (механический состав, почвенная текстура) — относительное содержание в почве, горной породе или искусственной смеси частиц различных размеров независимо от их химического или минералогического состава. Гранулометрический состав является важным физическим параметром, от которого зависят многие аспекты существования и функционирования почвы, в том числе плодородие.

Гранулометрический состав [1] — содержание в почве механических элементов, объединенных по фракции.

Классификация механических элементов почв по Н.А. Качинскому

Почвенные (органические, минеральные, органоминеральные) частицы получили название механических элементов.

Свойства механических элементов зависят от их размера. Близкие по размеру, а следовательно, и по свойствам частицы группируют по фракциям. Группировка частиц по фракциям называется классификацией механических элементов (табл.).

Отдельные фракции по-разному влияют на свойства почв и пород.

Камни (более 3 мм) — крупные обломки горных пород. Наличие камней затрудняет использование сельскохозяйственных машин и орудий и является механическим препятствием для роста и развития растений.

Гравий (1. 3 мм). Высокое содержание гравия в почвах придает им провальную водопроницаемость, отсутствие водоподъемной способности, низкую влагоемкость, что неблагоприятно для растений.

Песок (0,05. 1 мм) в отличие от гравия обладает некоторой капиллярностью и влагоемкостью. Почвам он придает высокую водопроницаемость, низкую пластичность, слабое набухание.

Пыль крупная (0,01. 0,05 мм) непластична, слабо набухает, имеет низкую влагоемкость.

Так как перечисленные выше фракции обладают рядом сходных свойств, их объединяют в отдельную группу и называют физическим песком.

Пыль средняя (0,005. 0,01 мм) имеет повышенную пластичность и связность, неплохо удерживает влагу, но обладает слабой водопроницаемостью. Почвы с высоким содержанием крупной и средней пыли легко распыляются, имеют склонность к заплыванию и уплотнению, отличаются низкой водопроницаемостью.

Пыль мелкая (0,001. ..0,005 мм) имеет высокую дисперсность, способна к структурообразованию, обладает поглотительной способностью, обогащена гумусовыми веществами. Но мелкая пыль придает почвам такие неблагоприятные свойства, как низкая водопроницаемость, способность к набуханию и усадке, липкость, трещиноватость, плотное сложение.

Ил (менее 0,001 мм) обладает высокой поглотительной способностью, содержит много гумуса, элементов питания. Коллоидная часть фракции активно участвует в структурообразовании.

Пыль средняя, мелкая и ил образуют физическую глину.

Самый важный морфологический показатель — это содержание в почве частичек разного размера. Твёрдые частички различного состава называются элементами механического состава. Совокупность элементов одиночного разреза составляет фракцию. Частички делятся на крупнозём (более одного мм) и мелкозём (менее одного мм), физический глина Классификация почв и пород по механическому составу Н.А. Качинского

В настоящее время наиболее широко распространена классификация Н. А. Качинского. В основе классификации почв по гранулометрическому составу лежит соотношение фракций физической глины и физического песка. В классификации, предложенной Н. А. Качинским, учитываются генетические особенности почв (табл.)

Основное и дополнительное название почв по механическому составу .

Механический состав почвы — это совокупность механических фракций. Фракции образуются из частиц сходного размера. Частицы или механические элементы образуются при выветривании камней и горных пород. Это долгий процесс, в результате, которого образуется рыхлая масса. Как правило, почва представляет собой смесь частиц разного размера, которые группируют по фракциям:


Фракции

Размер, мм

Камни

>3

Гравий

3-1

Песок крупный

1-0,5

Песок средний

0,5-0,25

Песок мелкий

0,25-0,05

Пыль крупная

0,05-0,01

Пыль средняя

0,01-0,005

Нередко совокупность частиц мельче 0,01 мм называют физической глиной, а крупнее 0,01 мм — физическим песком. Соответственно и почвы, в которых преобладают те или иных фракции называют глинистыми или песчаными почвами.
Методы определения гранулометрического состава почв

Скатывание шнура (по Н.А. Качинскому). Почву смачивают и растирают между пальцами до консистенции теста. В таком состоянии вода из почвы не отжимается, но почва поблескивает от нее и мажется. Хорошо размятую почву раскатывают на ладони ребром кисти другой руки, и шнур сворачивают в колечко. Толщина шнура около 3 мм, диаметр кольца приблизительно 3 см.

Скатывание шарика. Из сырой или смоченной размятой почвы скатывают шарик диаметром 2-3 см, который раздавливают между ладонями.

У песков рыхлых шарик не образуется; у песков связных он легко крошится; у супесей образуется, но имеет шероховатую поверхность и при раздавливании рассыпается; у суглинистых почв шарик получается с гладкой поверхностью, при раздавливании дает лепешку с трещинами по краям; у глинистых почв он имеет блестящую поверхность и сдавливается в лепешку, почти не трескаясь по краям.

Для точного установления механического состава почв применяют лабораторные методы анализа, которых существует несколько. Наиболее применяемые основаны на том, что после взбалтывания с водой почвы частицы разного размера оседают на дно сосуда с различной скоростью, зависящей при одном и том же удельном весе от размеров частиц. Собирая частицы через разные промежутки времени и зная скорость их падения по формуле Стокса, связывающей размер частиц с их плотностью и скоростью падения в воде, определяется их размер.

Агрофизические показатели плодородия почв — комплекс свойств почвы, характеризующих гранулометрический, минералогический состав, структуру, плотность, порозность, воздухо- и влагоемкость, а также агротехнологические параметры почв.

Агрофизические показатели плодородия являются основой создания оптимальных условий водного, воздушного, теплового и питательного режимов для жизни растений.

Агрофизические показатели, за исключением гранулометрического и минералогического составов, отличаются своей динамичностью в течение вегетационного периода, затрудняя их воспроизводство.

Навигация

Гранулометрический состав почв

Твердая фаза почвы — смесь механических фракций: минеральных, органический и органо-минеральных. Минеральные почвы содержат преимущественно минеральные механические частицы с разными размерами, формами, химическим и минералогическим составом.

Гранулометрический состав — относительное содержание в почве механических фракций. Является фактором плодородия пахотных почв, влияющий на продуктивную способность.

Частицы механической фракции принято подразделять на:

  • больше 1 мм в диаметре — скелет почвы;
  • меньше 1 мм — мелкозем, подразделяемый также на:
    • частицы более 0,01 мм — физический песок;
    • частицы менее 0,01 мм — физическая глина.

    В зависимости от соотношения физических песка и глины, почвы делятся на:

    • песчаные;
    • супесчаные;
    • суглинистые (легкие, средние, тяжелые);
    • глинистые (легкие, средние, тяжелые).

    В зависимости от сопротивления при обработке, почвы подразделяются на:

    • легкие (песчаные и супесчаные);
    • средние (легко- и среднесуглинистые);
    • тяжелые (тяжелосуглинистые и глинистые).

    Химический состав меняется в зависимости от гранулометрического состава. С уменьшением дисперсности частиц резко увеличивается содержание кислорода и уменьшается содержание железа, кальция, магния, алюминия, калия и натрия.

    Гранулометрический состав влияет на:

    1. Поглотительные (сорбционные) свойства: чем больше в почве тонкодисперсных частиц, и соответственно, чем выше удельная их поверхность, тем выше емкость поглощения, влагоемкость, гигроскопичность, пластичность, липкость.
    2. Плотность почв: с увеличение доли физического песка плотность уменьшается. Оптимальной для большинства культур считается плотность 1,0-1,3 г/см 3 .
    3. Структурообразование: фракция частиц размером менее 0,001 мм характеризуется высокой коагуляционной и поглотительной способностью, вследствие чего накапливает наибольшее количество гумуса и зольных элементов питания, являясь ценнейшей составляющей рыхлых почв.
    4. Наступление физической спелости, то есть способности почвы к крошению на мелкие комки при определенной влажности. Почвы тяжелого гранулометрического состава поспевают позже легкого.
    5. Пластичность определяется содержанием физической глины. С увеличением доли физической глины предел пластичности расширяется.
    6. Твердость. Высокая твердость повышает сопротивление почвы рабочим органам почвообрабатывающих машин и затрудняет рост проростков и корней растений.
    7. Липкость — технологическое свойство почвы. Увеличивается при большом содержании физической глины, ухудшая качество обработки.

    Наиболее благоприятное сочетание агрофизических, агрохимических и биологических показателей плодородия отмечается в почвах среднего гранулометрического состава. Влияние гранулометрического состава на плодородие может сильно варьировать в зависимости от других показателей. Например, для дерново-подзолистых почв, сформировавшихся в зоне достаточного или избыточного увлажнения, оптимальным является легкий гранулометрический состав, тогда как наиболее высокое плодородие черноземов, наблюдается на почвах тяжелого гранулометрического состава.

    Гранулометрический и минералогический составы не претерпевают существенных изменений при длительном сельскохозяйственном использовании земель, что позволяет выстраивать эффективную модель плодородия, опирающуюся на определенный диапазон изменений свойств почвы. Гранулометрический состав не требует воспроизводства, за исключением защищенного грунта и небольших участков, где его возможно изменить внесением песка или глины.

    Генетические свойства почв и их гранулометрический состав определяют потенциальную урожайность сельскохозяйственных культур.

    Механический анализ почвы

    Твердая фаза почвы состоит из частиц различных размеров, которые называются механическими элементами или гранулами. Относительное содержание в почве или грунте механических элементов называется механическим или гранулометрическим составом, а количественное определение их гранулометрическим или механическим анализом.

    Проведение гранулометрического анализа очень важно при определении физико-механических свойств почв/грунтов, таких как порозность, влагоемкость, водопроницаемость, плотность, пластичность, липкость, набухание и др., то есть тех свойств, которые напрямую влияют на плодородие почв или знание которых необходимо при проведении строительных работ.

    Механические элементы в зависимости от размера подразделяют на фракции: больше 3мм-камни, 3-1мм — гравий, песок 1-0,05мм (крупный, средний, мелкий), пыль – 0,05-0,001 (крупная, средняя, мелкая), ил – 0,001-0,0001 (грубый, тонкий) и коллоиды меньше 0,0001. Сумму всех механических элементов почвы размером меньше 0,01мм называют физической глиной, а больше 0,01мм – физическим песком. Кроме того, выделяют мелкозем, в который входят частицы меньше 1мм, и почвенный скелет – частицы больше 1мм.

    Соотношение физической глины и физического песка лежит в основе классификации почв по механическому составу. Все почвы и грунты по механическому составу объединяют в несколько групп с характерными для них физическими и химическими свойствами: песок, супесь, суглинок, глина. Каждая группа подразделяется на подгруппы в зависимости от крупности механических элементов и преобладающих фракций.

    Методы гранулометрического анализа

    Для точного установления гранулометрического состава применяют лабораторные методы, позволяющие находить количество всех групп механических элементов, слагающих почву или грунт.

    При исследованиях гранулометрического состава почв/грунтов песчаного и крупнообломочного состава, реже в супесчаных, применяется ситовой метод (метод просеивания на ситах). Пробы грунта просеивают через набор сит с отверстиями разного диаметра: 10; 5; 2; 1; 0,5; 0,25; 0,1. Каждую фракцию грунта, задержавшуюся на ситах, взвешивают и рассчитывают процентное содержание по отношению к общей массе грунта. При проведении гранулометрического анализа песков с размером частиц от 10 до 0,5 мм просеивание проводится без промывки, а от 10 до 0,1 мм с промывкой водой

    Для исследования гранулометрического состава глинистых и суглинистых грунтов для частиц менее 0,1мм применяют ареометрический и пипеточный методы гранулометрического анализа. Эти методы основаны на зависимости, существующей между скоростями падения частиц и их размером. Если взмутить суспензию почвы/грунта и оставить ее в спокойном состоянии, то постепенно взмученные частицы осядут. Быстрее будут осаждаться более крупные по размеру и более тяжелые механические элементы, то есть плотность и механический состав суспензии будут изменяться с течением времени.

    При ареометрическом методе производят измерения плотности отстаиваемой в цилиндре суспензии ареометром через определенные промежутки времени. Плотность, измеренная ареометром, зависит от содержания в суспензии взвешенных твердых частиц. Получив значения убывающей плотности через определенные промежутки времени, с помощью расчетных формул или по номограммам определяют процентное содержание частиц определенного размера.

    Пипеточный метод предполагает отбор проб суспензии из цилиндра с определенных глубин через разные промежутки времени. Для производства анализа взмучивают грунтовую суспензию и оставляют ее в покое на определенное время, после чего специальной пипеткой с нужной глубины отбирают пробу суспензии. Такая проба содержит только те частицы, которые не успели осесть за указанное время отстаивания. При следующих пробах, взятых пипеткой через большие промежутки времени от начала отстаивания суспензии, получают более мелкие частицы. Определяя массу высушенных проб и зная размер отобранных частиц (вычисляемый по длительности отстаивания суспензии и глубине взятия проб), вычисляют процентное содержание этих частиц в образце почвы/грунта.


    1. Первичные минералы – минералы, образованные выделением из раствора, расплавленной массы или парообразного состояния, образующиеся при испарении морской воды (гипс, галлит, сильвин), при остывании лав (оливин, санидин, апортит), при возгонке по трещинам и в кратерах вулканов (сера, хлорид натрия), а также входящие в состав магматических пород. Первичные минералы составляют 90–98 % массы мелкозема песков, 50–80 - суглинков и 1–12 - глин (Вальков и др., 2006).

    2. Вторичные глинистые минералы и окислы – образованы в результате биохимической и геохимической трансформации, выветривания и почвообразования из первичных минералов и продуктов их разрушения.

    3. Растворимые минералы – соли, которые могут быть в почвенном растворе и в сухих условиях переходить в твердую фазу почвы.

    Первичные минералы почв – основная группа веществ почв и пород выветривания, исходный материал для образования тонкодисперсных вторичных минералов. Они встречаются во всех породах в виде обломков (зерен) и в отдельном разобщенном состоянии. Их обломки приурочены к крупным песчаным и гравелистым фракциям, а индивидуальные минералы входят в состав тонкого песка и пыли.

    Вторичные минералы – глинистые минералы, минералы оксидов железа, алюминия, марганца, простых солей.

    Наиболее распространенные группы первичных минералов

    Полевые шпаты (алюмосиликаты) широко распространены, устойчивы к выветриванию, составляют 60 % массы земной коры, в почвах – 10–15 %. Типичные представители: ортоклаз КАlSi3О8, альбит NaАlSi3О8, анортит СаАlSi2О8, плагиоклазы как изоморфные смеси альбита и анортита.

    Силикатов в литосфере около 20 %: оливин (Mg, Fе) SiО4. авгит Са(Mg,Fе)Si2О5, роговая обманка MgSiО3.

    Кварц (SiО2) – наиболее распространенный минерал среди магматических пород, осадочных отложений и почв. Его преобладание снижает плодородие почв.

    Слюды – 3 % от общего объема пород – источники питания растений калием. Типичные представители: мусковит КН2Аl3(SiО4)3.и биотит КН2(Mg,Fе) 3Аl3(SiО4)3

    Апатит – прочный минерал изверженных пород, основной первоисточник фосфора (Р), в его составе Р, Са, F, Сl – 3Са3Р2О8 и Са (F, Сl) 2.

    Преобразование первичных минералов сопровождается образованием растворов, золей и гелей кремнезема, силикатов, окислов железа, алюминия, формированием вторичных минералов, поступлением в почвенные растворы простых солей.

    Основные группы вторичных минералов

    Глинистые минералы – основная часть вторичных минералов, определяют минералогический состав почв, обладают поглотительной способностью. Также как и гумус, они – источник поступления минеральных элементов в растения. Это вторичные алюмосиликаты с общей формулой n SiО2 Аl2О3•mН2О и характерным молярным отношением SiО2 к Аl2О3 в пределах 2:5.

    Наиболее распространены минералы группы монтмориллонита, каолинита, гидрослюд, хлоритов, смешанослоистых минералов. Они имеют слоистое кристаллическое строение, высоко дисперсны, обладают поглотительной способностью, содержат химически связанную воду.

    Монтмориллонит, бейделит, нонтронит – группа 3-хслойных минералов с набухающей решеткой. Их отличает высокая поглотительная способность в отношении обменных катионов и поллютантов. С гуминовыми кислотами (ГК) эти минералы образуют прочные темноокрашенные комплексы.

    монтмориллонит (Аl, Mg)2 (ОН)2 [Si4О10]•mН2О;

    бейделит (Ка, Na, Н3О) Аl2(ОН) 2 [АlSi3О10]•mН2О;

    нонтронит Fе2 (ОН)2[Si8О10]•mН2О.

    Для монтмориллонита характерно набухание с увеличением объема в 1,5–3 раза, с этим связаны такие свойства как жирность, липкость, вязкость, пластичность и гигроскопичность.

    Вермикулиты (лат. Vermiciular – червеобразный) – магниевые алюмосиликаты, сходны с монтмориллонитом и гидрослюдами. Вермикулит (Mg, Fе2+,Fе3+)3 (ОН) 2 [(Аl, Si) 4О10]•4Н2О. Цвет бурый, желтовато-бурый, золотисто-желтый, реже зеленоватый. Способны к набуханию, ЕКО около 100 мг-экв. Так его назвали, потому что при нагревании он увеличивается в объеме в 20–30 раз, его частички удлиняются, червеобразно изгибаются и скручиваются.

    В группу каолинита входит сам каолинит (наиболее распространен), диккит, накрит: Аl2(ОН)4[Si2О5]. Их структура состоит из двухслойных пакетов, Отдельные чешуйки каолинита бесцветны, сплошные массы белые. Он не набухает, доступ воды в межпактеное пространство затруднен из-за сильной связи между пакетами. Он не содержит щелочных и щелочноземельных оснований. Очень дисперсен, свободно мигрирует в суспензиях. Набухает слабо, у него невысокие плотность, липкость, связность и гидрофильность.

    Галлуазит встречается в виде гелеподобных масс, белый, по свойствам близок к каолиниту, но более гидратирован, имеет расширяющуюся кристаллическую решетку.

    Гидрослюды (иллит) – гидратированные формы слоистых минералов с морфологическим чешуйчатым строением. Но в отличие от монтмориллонита, связь между пакетами прочная и вода в них не проникает. Гидрослюды – важный источник калия. Они гидрофильны, липки, связны, набухают меньше монтмориллонита.

    Гидробиотит (К, Н3О) (Mg Fе)3(ОН) 2[(Аl,Si) 4О10]•mН2О.

    Гидромусковит (К, НзО)Аl (ОН)2 [(Аl,Si) 4О10]•mН2О.

    Глауконит К(Fе3+ Аl, Fе2+, Mg) 2(ОН) 2 [Аl, Si3О10]•mН2О.

    Хлориты – минералы близкие к слюдам. Кристаллическая решетка – из четырех слоев. Это смешаннослойные минералы с правильным чередованием слоев. Решетка их не набухает, стабильна.

    Минералы гидроокисей и окисей кремния, алюминия, железа, марганца образуются в аморфной форме при выветривании первичных минералов. Гидроокись кремния SiО2 •mН2О по мере старения переходит в твердый гель опал с той же формулой и с содержанием воды 2–30 %, затем, теряя воду, в кристаллические формы халцедона и кварца SiО2. Гидроокись Mn кристаллизуется в виде пиролюзита МnО2, псиломелана mМnО и МnО2•mН2О.

    Гидраты полутораокисей Аl2О3•mН2О, Fе2О3•mН2О кристаллизуясь, образуют вторичные минералы: бемит Аl2О3•Н2О, гидраргилит (гиббсит) Аl2О3•3Н2О или Аl (ОН)3 гематит Fе2О3, гетит Fе2О3•mН2О, гидрогетит Fе2О3 •m 3Н2О. Эти минералы обволакивают пленками агрегатное скопление глинистых минералов, встречаются в виде конкреций. Они не обладают поглотительной способностью, липкостью, не набухают (Вальков и др., 2006).

    Цеолиты – щелочные и щелочноземельные алюмосиликаты. Они образуются в пресноводных и соленых озерах, лагунах. При подъеме дна водоема на поверхность они остаются в почве как унаследованные от породы.

    Минералы простых солей образуются при выветривании первичных минералов. Кальцит СаСО3, магнезит MgСО3 , доломит [Са, Mg](СО3)2, сода Na2СО3•10Н2О, гипс СаSО4•2Н2О, мирабилит Na2SО4•10Н2О, галит NaС1, фосфаты, нитраты. Их качество и количество определяет степень засоления почв.

    Твердая фаза почвы состоит из механических элементов различного происхождения.

    Растворимые минералы – компоненты почвенного раствора. Формы соединений – истинно молекулярные и ионные растворы, ассоциации ионов и коллоидные золи. Важнейшие катионы: Ca2+, Mg2+, Na+, K+, NH4,+ H+, Al3+, Fe2+. Среди анионов преобладают: HCO3-, CO32-, NO3-, NO2-, Cl-, SO42-, H2PO4-, HPO42-.

    Механические элементы – разнообразные по величине обломки минералов и горных пород, органические и органо-минеральные соединения. К ним не относят кристаллы льда и биоту.

    Их почвы наследуют от породы, в процессе почвообразования они изменяются, так как в почве постоянно происходят следующие явления: дробление, растворение, гидролиз, осаждение, гумификация, перемещение тонких механических элементов вниз по профилю. В России принята классификация механических элементов почв, разработанная Н. А. Качинским (табл. 8).

    Классификация механических элементов почв по размеру

    Диаметр элементов, мм

    Скелет почвы, камни

    Скелет почвы, гравий

    Мелкозем почвы: песок

    Генетическое и экологическое значение скелетности почв

    Скелетные почвы представлены зональными неполноразвитыми подтипами черноземов, серых и бурых лесных, коричневых почв, желтоземов.

    Скелет почвы может быть различного происхождения: известняковый, мергелистый, гранитный, сланцевый, кварцитовый, галечниковый. Это придает почвам особую экологическую специфику. Рост доли скелета приводит к снижению мелкозема в почве, запасов питательных веществ и продуктивной влаги, в итоге – к истончению мощности корнеобитаемого слоя и снижению плодородия.

    Генетическое и экологическое значение структуры почв Структура почвы – взаимное расположение структурных отдельностей (агрегатов) определенной формы и размеров. В значительной степени экологическая оценка почв определяется структурным состоянием, в первую очередь, количеством и качеством зернистой и мелкокомковатой структуры. Наличие подобных агрегатов – залог оптимальных условий развития корневых систем растений и существования почвообитающих животных. Аэробные микроорганизмы успешно развиваются в межагрегатной среде, анаэробные – в массе самих агрегатов.

    Почвенные горизонты состоят из агрегатов, структурных отдельностей определенной формы и размеров. Структурные агрегаты сформированы из механических элементов фракций пыли и ила. Они удерживаются в сцепленном виде в результате коагуляции коллоидов, склеивания, слипания, остаточных валентностей и водородных связей, адсорбционных и капиллярных явлений в жидкой фазе, а также с помощью корневых тяжей, грибов и слизи микроорганизмов. Одним из основных качественных признаков почв является размер агрегатов

    По размерам выделяют три группы:

    • макроагрегаты, размер части более 10 мм,

    • микроагрегаты (меньше 0,25).

    В агрономическом смысле почва считается структурной, если комковато-зернистые водопрочные агрегаты размером от 10 до 0,25 мм составляют более 55 %. Их называют агрономически ценными. Они обладают водопрочностью, противостоят размывающему действию воды, обеспечивают оптимальный водно-воздушный режим почв.

    Структурные почвы отличаются хорошей аэрацией (газообмен с атмосферным воздухом), быстро впитывают осадки, медленно испаряют влагу. Им свойственна высокая микробиологическая активность, они легко поддаются обработке.

    При бесструктурном состоянии механические элементы почвы существуют раздельно или залегают в виде сплошной массы. У таких почв низкая водопроницаемость, воздухопроницаемость. Разрушение структуры почвы происходит под влиянием механического воздействия (машинная деградация, пастбищная нагрузка), изменения физико-химической обстановки (осолонцевание, содовое засоление).

    Экологическое значение гранулометрического состава почв

    Гранулометрический состав – относительное содержание в мелкоземе почвы твердых частиц (механических элементов, фракций) разной величины. В основу классификации почв по гранулометрическому составу положено соотношение физического песка (частицы размером крупнее 0,01 мм) и физической глины (менее 0,01 мм). Более детальное разделение фракций: песок (1–0,25 мм), пыль (0,25–0,001 мм), ил (меньше 0,001 мм).

    Гранулометрический состав – важнейшая характеристика почвы. От нее зависят многие ее свойства и плодородие. Он оказывает существенное влияние на воздушные и тепловые свойства, окислительно-восстановительные условия, поглотительную способность, накопление в почве гумуса, элементов питания. Размеры частиц отражают различия в свойствах гранулометрических фракций.

    Песчаная фракция (1–0,25 мм) состоит из обломков разных горных пород и минералов, в ней преобладают кварц и полевые шпаты. Пески имеют высокую водопроницаемость, свободно фильтруют воду, не набухают, не пластичны. Эти свойства используют при заполнении выемок, канав, траншей, где недопустима усадка грунта.

    Фракция крупной пыли (0,25–0,001 мм) по минералогическому составу мало отличается от песчаной, не пластична, слабо набухает.

    Средняя пыль (0,01–0,005мм) содержит много слюды, которая придает ей пластичность и связанность. Средняя пыль дисперсная, лучше удерживает влагу, чем предыдущие фракции, слабо водопроницаема. Для частиц этой фракции характерна неспособность к коагуляции и структурообразованию. Почвы, в которых эта фракция преобладает, легко распыляются, склонны к уплотнению и образованию сплошной корки.

    Тонкая пыль (0,005–0,001 мм) отличается высокой дисперсностью. Кусочки горной породы отсутствуют, характерно наличие минералов. Заметно резкое уменьшение кварца. Появляются свойства, не присущие крупным фракциям: способность к коагуляции и структурообразованию. Фракция может содержать органические вещества.

    Читайте также: