5 как обеспечить высокое качество измерения углов

Обновлено: 16.05.2024

(синонимы — уклономер, угломерка, угломера, угло́метр) — угломерный прибор (инструмент, снаряд), предназначенный для измерения геометрических углов в различных конструкциях, в деталях и между поверхностями (в основном контактным методом) и между удалёнными объектами (оптическим методом). Измерение производится в градусах, на основе линейчатой шкалы, линейчато-круговой шкалы (с механическим указателем или стрелкой), нониуса или в электронном виде, в зависимости от типа прибора.

Угломер в самом простом виде состоит из двух пластин (линеек), закреплённых вместе на одной оси, остающихся подвижными на этой оси (образуют подвижный наугольник), с нанесенной шкалой, выраженной в градусах. Шкала может быть линейчатой или линейчато-круговой (нанесённой по окружности вокруг оси, на одной из линеек). В некоторых практических приложениях, например столярных, не требуется регулировка всех углов наугольника и обычно работают с несколькими фиксированными углами, один из таких столярных наугольников носит специальное название — ерунок (столярный наугольник, у которого линейки закреплены под углом 45° или в треугольном виде 45°/45°). Впервые угломеры появились в древности (в Древнем Египте и Древнем Риме), когда возникла необходимость при проведении строительных работ устанавливать определённые углы в различных постройках и между поверхностями.

Угломер в артиллерии — горизонтальный угол, в точке стояния орудия, отсчитываемый против хода часовой стрелки, между обратным направлением оси канала ствола наведённого орудия и направлением на точку наводки.

Особенности конструкции и принцип работы

Геометрический принцип работы любого угломерного прибора основан на сравнении величины измеряемого угла с частью длины окружности. Полная окружность соответствует углу в 360о, единица измерения угла определена учеными в 1/360 часть полной окружности- 1 градус (угловой). С повышением точности измерений стали говорить о дробных частях градуса- десятичных дробях или 1/60 его части- угловой минуте и 1/360- угловой секунде.

Простейшие механический угломеры состоят из полукруглой шкалы, размеренной в градусах, и подвижной линейки, закрепленной одним концом. Измерение проводится так:

  • одну сторону измеряемого угла совмещают с основанием шкалы;
  • другую- с подвижной линейкой;
  • в месте пересечения линейки и шкалы считывают величину угла.

Более совершенные модели дополняются узлами, облегчающими считывание показаний шкалы, фиксирующими положение прибора относительно горизонта, позволяющими фиксировать направление на удаленные точки сторон углов и другие.

Изготавливают из их инструментальной стали, реже- из бронзы.

Многие строительные угломеры, особенно с электронными модулями, изготавливают из легких алюминиевых сплавов. При работе с такими устройствами следует соблюдать осторожность, избегать их падения на твердые поверхности, а также падения инструментов и стройматериалов на сами приборы.

Лазерные модели угломеров воссоздают пространственную картину измеряемого угла на основании нескольких опорных точек, координаты которых измеряются лазерным дальномером. Величина угла вычисляется встроенным компьютером на основании этих координат. Такие модели имеют пластиковый корпус и электронную начинку.






Оглавление

Угломер с нониусом относится к механическому типу измерительных приборов, которые служат для измерения геометрических углов в различных деталях и конструкция. Его даже можно применять для работы с удаленными объектам, используя оптический метод, если есть возможность зафиксировать его в точном положении. Результаты показываются в градусах, а благодаря дополнительной шкале и более точные показания. Отличительной чертой данного прибора является наличие шкалы нониуса, которая прикреплена к прибору на специально удлиненной линейке. Благодаря ей можно измерять все с точность до десятых долей градусов. Таким образом, данный тип может использоваться в более широкой сфере, где требуется большая точность получаемых данных.

Угломер механический с нониусом

фото:угломер с нониусом

В качестве преимуществ стоит отметить повышение класса точности прибора. Использование нониуса дает возможность работать с десятыми долями, что во многих сферах оказывается очень полезным, так что среди специалистов именно он пользуется наибольшим спросом. Как и многие другие механические измерительные приборы, угломер с нониусом является долговечным устройством, у которого нет определенного срока использования. В качествен недостатков можно выделить особые условия хранения и сложность в ремонте, так как тут нет легко заменяемых деталей. Если сравнивать с электронными версиями, то эта может выглядеть устаревшей, хотя и активно используется в наше время.

Разновидности и особенности конструкции

Существует несколько моделей механических измерительных приоров с нониусом. Практически все они выполняются из металла. Принцип изменения у них одинаков и отличия состоят только в размере, разметке шкалы и некоторых особенностях дизайна. Как правило, шкала выполняется в виде транспортира, не обязательно правильной формы. К ее средине прикреплена металлическая линейка, которая и контролирует угол наклона и показатели измеряемой величины. Возле той части, где линейка проходит рядом со школой прибора, на ее поверхности расположена шкала с нониусом.

Читать также: Инструментальная сталь что это такое

Угломер механический с нониусом

фото:устройство угломера с нониусом

Угломер механический с нониусом

фото:угломер с нониусом 2УМ

Угломер механический с нониусом

фото:угломер с нониусом 4УМ

Технические характеристики

Внутренних 40-180 º

ПараметрТип 2Тип 1Тип 4
Модель угломера 1005 (127)2УМ5УМ4УМ
Значение отчета по нониусу, мин.10´
Пределы измерения углов, град.0-180º0-180º0-180º
Основная погрешность, мин.±2´±2´±3´±10´

Из этого следует угломер с нониусом типа 4 является одним из самых простых и менее точных. В тот же время он наиболее дешевый из всей линейки. Угломер с нониусом Тип 2 – один из самых точных. Он имеет более сложную конструкцию и дополнительный опор. Все они делаются из инструментальной стали, что обеспечивает им длительный срок службы и надежность эксплуатации.

Как пользоваться угломером с нониусом – принцип проведения работы

Механический угломер с нониусом является самым привычным инструментом в работе специалиста. Сразу стоит отметить, что с него можно снимать показания, как с учетом дополнительной шкалы, так и без нее. Разница будет лишь в точности. Первый способ намного проще и если вы ранее не пользовались таким прибором ранее, то следует уделить, для начала, внимание именно этому варианту. Показания можно снимать с любой поверхности, причем работать даже с внешними углами, а не только с внутренними, если это позволяет особенность модели.

Угломер механический с нониусом

Первую очередь следует убедиться в том, что прибор четко зафиксирован на нуле и линейка не имеет люфта. Если она слишком легко ходит и немного сползает, то при измерении могут возникнуть проблемы и лучше заменить такой прибор на исправный. Нижняя горизонтальная плоскость служит условной точкой отсчета, так что ее требуется точно расположить вдоль той горизонтали, которая вам нужна. В некоторых моделях имеется дополнительный упор для этого. После этого можно поворачивать линейку до нужной вам точки, что и покажет, сколько градусов в том или ином угле. Ненадежно закрепленная линейка может и подойдет для измерения, но для разметки ее уже нельзя использовать.

Второй способ как пользоваться угломером с нониусом предполагает использование и дополнительной шкалы. Как только вы зафиксировали показание, то следует остановить линейке и просчитать деления на нониусе. Расчет ведется от первой линии, которая является нулевой, до той, которая совпадает с линией показания измеренного угла. Таким образом, если прибор показал угол в 36 градусов и этой отметке соответствует пятая черта нониуса, то точное показание будет 36,4 градуса.

Читать также: Порошковая проволока для сварки нержавейки полуавтоматом

Классификация видов

Существует несколько классификаций угломеров. Среди них наиболее значимы следующие:

  • по сфере применения;
  • по точности;
  • по погрешности измерения;
  • по принципу измерения;
  • по виду измеряемых углов.

По сфере использования различают следующие типы устройств:

  1. Строительные. Рассчитаны на большие расстояния. Применяются для разметки объектов и во время монтажа, чтобы закрепить конструкции правильно.
  2. Плотницкие. Оперируют сантиметрами, дециметрами. Используются для разметки деталей из дерева и других материалов.
  3. Навигационные. Определяют направление на небесные светила, используются для вычисления географических координат точки наблюдения.
  4. Слесарные. Отличаются от плотницких повышенной точностью, работают с металлическими заготовками и конструкциями.
  5. Учебные. Применяются учащимися при изучении начальной и начертательной геометрии.
  6. Артиллерийские. До конца XX века использовались для наводки орудий. В настоящее время вытесняются электронными системами наведения.
  7. Горные. Строительные, приспособленные для работы в закрытых пространствах горных выработок.

По виду измеряемых углов приборы делятся на

  • внешние (маркировка УМ);
  • внутренние (маркировка УН).

Типы угломеров в зависимости от принципа измерения будут рассмотрены в следующем разделе.

Таким образом, обе описанные выше марки, имеющие классическую конструкцию, оценены потребителями как вполне достойные. Однако иногда инструмент этого типа необходим для выполнения самых простых работ. В этом случае обычно используется особая разновидность угломеров — малки. Их основной отличительной особенностью является простота конструкции.

Типы угломеров по принципу измерения

В зависимости от использованного способа угловых измерений, устройства разделяют на несколько типов:

Механические

Широко распространенные в слесарном и столярном деле механические угломеры делят на два подвида:

  • простые, представляющие собой угловую шкалу-транспортир и закрепленную одним концом в начале координат линейку;
  • оборудованные нониусом- дополнительной шкалой для более точного считывания показаний.

Угломер


Механический угломер
Измерения плоских углов проводятся контактным способом- инструмент следует плотно прижимать к поверхности.

Маятниковые

Кроме определения угла между двумя направлениями, позволяют также проводить угловые измерения относительно горизонта. В старинных конструкциях для этого использовали отвес, прямой угольник либо карданный подвес, в современных применяют конструкцию, стабилизирующее свое положение в пространстве за счет быстрого вращения ротора- гироскопа. Прибор позволяет быстро определить уклон поверхности, наклоны сторон сложных конструкций и т. п. Некоторые лазерные дальномеры могут определять положение линии горизонта, обрабатывая сигналы спутников GPS

Оптические

В устройствах этого типа одна (или обе) стороны угла обозначаются с помощью оптической системы, направляемой на маркерную точку на измеряемом объекте. Это средство дистанционного измерения. К ним относятся навигационные, горные, астрономические и многие строительные приборы.

Лазерные

Это наиболее совершенные на сегодняшний день приборы. Обычно их совмещают с лазерным дальномером, угловые измерения- это дополнительная функция большинства из них. Два или более лазерных луча направляются на точки, лежащие на сторонах измеряемого угла. Процессор проводит вычисления угловых значений и выводит их на дисплее устройства. Может измерять углы в любой плоскости, отсчитывать их от заданной пользователем системы координат.

Простейшие устройства используют механическую шкалу, на которой оператором поворачивается лимб с установленной лазерной указкой. Продвинутые обрабатывают отраженный сигнал лазера самостоятельно.

Угломер


Лазерный угломер

Широко используются при разметке строительных площадок и промышленных конструкций. Если при ярком солнечном свете пятно засветки от лазерного луча плохо видно, применяют дополнительные усилители и отражатели.

Электронные

Вычисление значений проводится встроенным процессором. Результаты измерений выводятся на дисплей. Устройства позволяют запоминать результаты последних измерений, проводить вычисления на их основе: например, разницу двух измеренных углов. Такие устройства активно используются при разметке заготовок на машиностроительных и деревообрабатывающих производствах, при раскрое листовых и рулонных материалов.

Кроме того, в учебе, производстве, строительстве и в быту широко используются угломеры постоянных углов- это шаблоны, выполненные с фиксированным углом в 90, 30, 45, 60. С их помощью можно определить, равен или нет измеряемый угол зафиксированному в шаблоне значению.





Сфера использования

Сфера применения угломеров- это практически все области деятельности человека. Они требуются везде, где проводится проектирование изделий, построение их чертежей и разметка заготовок. Угловые измерения проводятся в таких отраслях, как:

  • строительство;
  • промышленность (от горнодобывающей до швейной);
  • военное дело;
  • обучение;
  • транспорт;
  • фундаментальная наука;
  • прикладные исследования;
  • искусство;
  • обучение.

Угломер


Угломер используют в разных сферах, в том числе и в строительстве
Углы окружают человека повсюду- повсюду он пользуется и угломерами.

Горизонтальным углом называют проекцию b пространственного угла ÐCAB (рис. 7.1) на горизонтальную плоскость P. Для измерения горизонтального угла, образуемого направлениями и , необходимо круг с делениями расположить горизонтально, совместив его центр с отвесной линией AA¢, проходящей через вершину угла A, и определить число делений круга между проекциями направлений и на плоскость круга.

Вертикальные углы - это углы, расположенные в вертикальной плоскости (рис. 7.2). Углом наклона линии называют угол n между направлением линии и её проекцией на горизонтальную плоскость. Углы наклона выше горизонта - положительные, ниже горизонта - отрицательные. Зенитное расстояние – угол z между направлением в зенит и направлением линии.

Горизонтальные и вертикальные углы измеряют теодолитами.

7.2. Устройство теодолитов

Рис. 7.3. Схема устройства теодолита: ii - ось вращения алидады; tt - ось вращения трубы; ss - визирная ось трубы; uu - ось уровня алидады.

Лимб это стеклянный круг, по скошенному краю которого нанесены деления с оцифровкой от 0 до 360º по часовой стрелке.

Алидада - верхняя часть прибора, расположенная соосно с лимбом. Алидада несет стойки 6, на которые опирается ось tt вращения зрительной трубы 8 с вертикальным кругом 7. Установка оси ii вращения алидады в отвесное положение выполняется тремя подъёмными винтами подставки по цилиндрическому уровню 5.

Вращающиеся части теодолита снабжены закрепительными винтами для их установки в неподвижное положение и наводящими винтами для плавного их вращения.

Оптическая система трубы (рис. 7.4.) состоит из объектива 1, окуляра 2 и фокусирующей линзы 3, которую с помощью специального устройства - кремальеры 5, перемещают вдоль геометрической оси трубы. Между фокусирующей линзой и окуляром помещена сетка нитей 4 – деталь, несущая стеклянную пластину с нанесёнными на нее вертикальными и горизонтальными штрихами. При измерении углов перекрестие штрихов – центр сетки нитей, наводят на изображение визирной цели.

Сетка нитей имеет четыре исправительных винта, позволяющих перемещать ее в горизонтальном и вертикальном направлениях.

Линия, проходящая через оптический центр объектива и перекрестие сетки нитей, называется визирной осью.

Увеличением трубы называется отношение угла, под которым изображение предмета видно в трубе, к углу, под которым предмет виден невооружённым глазом. Практически увеличение трубы равно отношению фокусного расстояния объектива к фокусному расстоянию окуляра. Трубы геодезических приборов имеют увеличение от 15 ´ до 50 ´ и более.

Полем зрения трубы называется пространство, видимое в трубу при её неподвижном положении. Обычно оно бывает от 1 до 2º.

Визированием называют наведение трубы на цель. Точность визирования зависит от увеличения трубы и приближенно равна

,

где v ´ – увеличение зрительной трубы, а 60²– средняя разрешающая способность глаза.

Для визирования трубу фокусируют “по глазу” и “по предмету”. При этом, глядя в трубу, вращением диоптрийного кольца окуляра добиваются чёткого изображения сетки нитей, а перемещением фокусирующей линзы 3 - чёткого изображения наблюдаемого предмета.

Отсчётные устройства служат для взятия отсчетов по горизонтальному и вертикальному кругам. Они снабжены отсчетными микроскопами. Различают микроскопы штриховые, шкаловые и микроскопы с оптическими микрометрами.

В штриховом микроскопе отсчет с точностью 1¢ берут по положению нулевого штриха алидады а (рис. 7.5, а), интерполируя минуты на глаз.

Рис. 7.5. Поле зрения отсчётных микроскопов:

а - штрихового (отсчёт по горизонтальному кругу 159º46’, по вертикальному 350º48’); б - шкалового (отсчёт по горизонтальному кругу 295º36’, по вертикальному -4º47’);

в - оптического микрометра (отсчет 145º23’14’’).

Шкаловый микроскоп имеет две шкалы, совмещённые с лимбами вертикального и горизонтального кругов (рис. 7.5, б). Отсчёты берут по градусным штрихам лимбов. Шкала вертикального круга теодолита 2Т30 имеет два ряда подписей. Если перед градусным делением отсутствует знак, отсчёт делают так же, как и по горизонтальному кругу. Если перед цифрой градусов стоит минус, то минуты считывают по шкале от -0 до -6 (справа налево).

Точные теодолиты снабжены микроскопами с оптическим микрометром (рис. 7.5, в). Градусы отсчитывают по основной шкале после совмещения верхнего и нижнего изображений штрихов горизонтального (или вертикального) круга, а минуты и секунды читают по шкале микрометра.

Эксцентриситет алидады. Несовпадение оси вращения алидады CA (рис. 7.6) с центром лимба CL называется эксцентриситетом алидады и является причиной систематических погрешностей при измерении углов. Так, при повороте алидады на угол b (рис. 7.6 а) вместо верной разности отсчетов по лимбу О2О1 из-за эксцентриситета алидады будет получена разность M2M1.

При отсутствии эксцентриситета поворот алидады на 180° (см. рис. 7.6 б) вызывает изменение отсчета на 180°. А при наличии эксцентриситета отсчеты до и после поворота различаются не ровно на 180°, так как содержат одинаковые погрешности эксцентриситета e, но с разным знаком. Так на рис. 7.6 б отсчет M1 больше верного отсчета O на угол e, а отсчет M2 меньше верного отсчета на угол e.

Рис. 7.6. Эксцентриситет алидады: а – влияние на результат измерения угла; б – исключение влияния; CL – центр лимба; CA – ось вращения алидады.

Для исключения погрешности эксцентриситета горизонтальные углы измеряют при двух положениях вертикального круга – круг слева и круг справа. При этом отсчётное устройство обеспечивает взятие отсчетов на противолежащих частях лимба. Среднее из результатов, полученных при круге слева и круге справа, свободно от ошибки эксцентриситета.

Высокоточные теодолиты имеют двухсторонние отсчетные устройства, обеспечивающие одновременное взятие отсчетов по противоположным частям лимба.

Уровни служат для приведения осей и плоскостей приборов в горизонтальное или вертикальное положение. По конструкции они бывают цилиндрические и круглые.

[image]

Рис. 7.7. Цилиндрический уровень:

Цилиндрический уровень (рис. 7.7.) состоит из стеклянной ампулы, верхняя внутренняя поверхность которой отшлифована по дуге окружности определённого радиуса. При изготовлении уровня её заполняют горячим эфиром или спиртом и запаивают. При охлаждении в ампуле образуется небольшое пространство, заполненное парами жидкости и называемое пузырьком уровня. Ампула помещается в металлическую оправу, снабжённую исправительными винтами для регулировки положения уровня (на рис. 7.7, а - винт М). На внешней поверхности ампулы нанесена шкала со штрихами через 2 мм. Точка в середине шкалы называется нульпунктом уровня. Касательная к внутренней поверхности ампулы в нульпункте называется осью уровня. Пузырёк уровня занимает в ампуле наивысшее положение, поэтому, когда его концы расположены симметрично относительно нульпункта, ось уровня горизонтальна.

Центральный угол t (рис. 7.7, б), соответствующий одному делению шкалы, называется ценой деления уровня. Цена деления уровня, выраженная в секундах, определяется по формуле

где l - длина деления шкалы; R - радиус внутренней поверхности ампулы; ρ - число секунд в радиане. В разных типах теодолита цена деления цилиндрического уровня бывает от 15² до 60².

У круглого уровня (рис. 7.8.) внутренняя поверхность верхней стеклянной части ампулы имеет сферическую поверхность. Шкала уровня имеет вид окружностей с общим центром, который служит нульпунктом.

Рис. 7.8. Круглый уровень:

а – вид сверху; б –разрез и ось уровня

Нормаль к внутренней сферической поверхности ампулы в нульпункте называется осью круглого уровня. При расположении пузырька уровня в нульпункте ось уровня занимает отвесное положение. Цена деления круглого уровня бывает в пределах 3 - 15’. Круглые уровни служат для предварительной установки прибора в рабочее положение.

Разновидности теодолитов. В зависимости от точности теодолиты подразделяют на высокоточные (Т1), точные (Т2, Т5) и технические (Т15, Т30, Т60). Цифрами здесь указана точность измерения горизонтального угла одним приемом в лабораторных условиях, выраженная в секундах.

Различаются теодолиты и по конструкции.

Так, для измерения вертикальных углов точные теодолиты снабжены уровнем при вертикальном круге. У технических теодолитов такого уровня нет, его роль выполняет уровень при алидаде горизонтального круга. Есть теодолиты, в которых уровень при вертикальном круге заменен автоматическим компенсатором углов наклона (теодолиты Т5К, Т15К).

Теодолиты бывают с трубами прямого и обратного изображения. В первом случае в шифр теодолита добавляют букву П (Т5КП, Т15КП, Т15МКП). Маркшейдерские теодолиты (Т30М, Т15М), предназначенные для подземных работ, где возможно наличие взрывоопасного газа метана, изготавливают в специальном исполнении.

Электронные теодолиты (например, Т5Э) обеспечивают автоматическое считывание отсчетов по горизонтальному и вертикальному кругам. Угломерная часть электронного теодолита представляет собой растровый датчик накопительного типа. Датчиком угла служит стеклянный круг с нанесенным на него штрих-кодом. Сигнал, прочитанный фотоприемником, поступает в электронную часть датчика угла, обрабатывается и выводится в градусной мере на дисплей и в память прибора. Наличие двухосевого компенсатора обеспечивает автоматический ввод поправок за наклон в отсчеты по горизонтальному и вертикальному кругам.

Электронный теодолит является важной частью современного универсального прибора – электронного тахеометра.

В разное время каждый из нас знакомится с геометрическими, географическими и геодезическими инструментами для измерения углов. Нахождение углов осуществляется при выполнении полевых геодезических, маркшейдерских, изыскательских работ и камеральной обработке измерений.

Измерения углов на плоскости

Наверное, самым первым знакомством из так называемых камеральных инструментов у каждого из нас было знакомство с транспортиром. На профессиональном уровне металлический геодезический транспортир с поперечным масштабом использовался в маркшейдерских отделах шахт и карьеров при выполнении камеральных, проектных и подготовительных работ. С его помощью графическим способом определяют горизонтальные углы и откладывают дирекционные углы при проектировании горных выработок, подготовительных работах для задания им направления на планшетах и планах.

Следующим, применяемым в камеральных условиях геодезическим инструментом можно считать тахеограф. Его используют при графическом оформлении результатов тахеометрической съемки. Он представляет единую конструкцию из круга с градусной шкалой и линейки. С его помощью по дуге вдоль конструкции круга отмечаются значения горизонтальных углов съемочных точек, перенесенных из журнала полевых работ. А расстояния до точек съемки откладывают по линейке в соответствующем масштабе составления плана.

Пространственные измерения углов

Для получения пространственного положения точек местности и отображения их на плоскости в геодезии применяются способы измерения расстояний и углов между ними с помощью различных геодезических приборов.

Качественной характеристикой геодезических и маркшейдерских измерений считается точность их выполнения, которая зависит от многих факторов и аспектов. Одним из них являются средства измерения. Существует своеобразный инженерный подход для выбора соответствующего инструмента требуемой точности работ. Так что все приборы измеряющие углы можно разделить по точности исполнения измерений.

Буссоль и эклиметр

Эти два приспособления могут использоваться в одном виде работ, называемом буссольная съемка (ход). Она применяется в местности, где нет возможности применять теодолитные ходы, тахеометрические съемки. Особую ценность при съемках крутых, круто наклонных и наклонных горных выработок в рудниках имеет подвесная буссоль, используемая до настоящего времени.

Буссолью измеряют магнитные азимуты всех сторон хода, по разности которых можно определить горизонтальные углы. На планах графическим способом выстраивают линии буссольного хода с применением транспортира при откладывании азимутов (или горизонтальных углов) и с использованием поперечного масштаба и циркуля при построении длин линий хода. При прокладывании буссольного хода для получения вертикальных углов между точками используют подвесной эклиметр.

Он представляет собой металлический полукруг со шкалой и отвесом, крепящимся в его центре. При подвешивании полукруга на натянутые между точками хода шнуры берут отсчеты по отвесной линии, проходящей через шкалу эклиметра. Эти отсчеты соответствуют значениям вертикальных углов линий буссольного хода, которые необходимы для определения горизонтальных проложений этих сторон.

Угломеры

Следующим прибором, служащим для измерения углов, применяющимся в маркшейдерском производстве, безусловно, считается угломер горный. Этот инструмент используется для определения линии и формы очистного забоя в подземных горных выработках угольных шахт. Развитие и применение таких приборов проходило на протяжении практически всего советского периода страны, последний из них У-60 выпускался со специальными визирными марками.

Точность измерения углов такими приборами относительно не высокая, но вполне достаточная для тех работ, которые выполняются с их помощью. Зависит она в первую очередь от точности снятия отсчетов и цены деления механической части шкалы, а именно: отсчетного устройства лимба с дополнительными шкалами (нониус, верньер).

Теодолиты и тахеометры

Наиболее широко используемыми инструментами для измерения горизонтальных и вертикальных углов в современной геодезии и маркшейдерии являются теодолиты. Основным критерием, по которому разделяют теодолиты на разные типы, считается точность измерений. Из них можно выделить:

  • высокоточные приборы Т-1 (ТБ-1), Т-05, с точностью измерений соответственно 1,0 и 0,5 секунд;
  • точные приборы Т-2 и Т-5, по точности угловых измерений соответственно 2 и 5 секунд;
  • инструменты технической точности серий Т-15, Т-30, с измерениями углов точностью 15 и 30 секунд соответственно.

Числовые величины в маркировках современных теодолитов соответствуют значению, с девяноста пяти процентной вероятностью, среднеквадратической погрешности измерения угла.

Известно, что для определения пространственного положения точек используются измерения углов в вертикальной плоскости или как их называют вертикальных углов. Для этого в угломерах, теодолитах конструктивно устроен вертикальный круг измерений. В последние десятилетия технические усовершенствования и технологическое развитие сказалось и на новых устройствах теодолитов. Появились новые модификации и в зависимости от назначения этих устройств выделяют:

    маркшейдерские;
  • гироскопические теодолиты;
  • фототеодолиты;
  • электронные теодолиты; .

Инклинометры

Интересный прибор, связанный с измерительным процессом определения пространственного положения в точках недоступных для измерений другими возможными способами. С его помощью определяют угол наклона (вертикальный угол) и азимут линии в заданном направлении в конкретной точке (точки съемки), например при бурении скважин.

Принципы действия в настоящее время в таких приборах разнообразны. В основе использования простейшего устройства инклинометра ИК-2 стоят три чувствительных элемента, позволяющие определять пространственное положение:

И один элемент в этом приборе позволяет фиксировать азимут и угол наклона, называемый переключающим механизмом.

Не вдаваясь в технические особенности всевозможных видов инклинометров, они в любом случае состоят из двух частей:

  • глубинного (высотного датчика);
  • наземной станции, регистрирующей на панели управления данные измерений.

На местности измерения углов производятся при помощи инструментов, называемых теодолитами. Мерой измерения углов служит градус, представляющий 1/90 прямого угла или 1/360 окружности. Градус содержит 60 угловых минут, минута делится на 60 угловых секунд. В некоторых странах применяют градовую систему, в которой град составляет 1/400 окружности, градовая минута 1/100 град, а градовая секунда – 1/100 градовых минут.

В современных автоматизированных угломерных приборах единицей измерения служит гон, равный 1 град или 54 угловых минут; тысячная его доля, равная 3,24 угловых секунд, называется миллигон.


Рис. 4.1. Принцип измерения горизонтального угла

сли на местности закрепим три точками, образующих уголАВС (рис. 4.1), и в точке В установить теодолит, то угол β будет соответствовать линейному углу abc двугранного угла, образованному двумя плоскостями Р и Т,. таким образом, горизонтальным углом является ортогональная проекция пространственного угла на горизонтальную плоскость.


Для измерения угла β достаточно установить теодолит таким образом, чтобы центр горизонтального круга совпадал с ребром двугранного угла, а его плоскость была горизонтальной, при этом угол β будет равен углу , т.е.


.

Отсчет получается в точке пересечения шкалы угломерного круга плоскостьюТ, отсчет – в точке пересечения шкалы плоскостьюР.

Вертикальный угол или углом наклона является угол, лежащий в вертикальной плоскости и заключенный между горизонтальной плоскостью и наклонной линией, совпадающей с направлением на определяемую точку местности.

4.2. Классификация теодолитов

Теодолит – геодезический прибор, предназначенный для измерения горизонтальных и вертикальных углов, расстояний и углов ориентирования. Теодолиты классифицируются по различным признакам: точности, конструктивным особенностям и назначению. По точности теодолиты подразделяются на три категории: высокоточные, со средней квадратической ошибкой измерения угла одним приемом до 1″, точные – 2-5″ и технические – 15-60″.

Высокоточный теодолит Т1 характеризуется средней квад­ратической погрешностью измерения горизонтального угла од­ним приемом, равной 1″. Он применяется для угловых измере­ний в плановых опорных сетях 1 и 2 классов, а также для про­изводства прецизионных геодезических работ при строительстве и эксплуатации ответственных инженерных сооружений.

Точные теодолиты Т2 и Т5 со средними квадратическими погрешностями измерения углов соответственно 2" и 5". Они теодолиты применяются при создании плановых опорных сетей 3 и 4 классов, а также сетей сгущения 1 разряда и при геодези­ческих разбивочных работах соответствующей точности.

Технические теодолиты Т15, ТЗО; из них первые два используются при развитии съемочных сетей и топографических съемках и выполнения разбивочных работ, не требующих высокой точности.

4.3. Устройство теодолитов

Устройство теодолитов реализует принцип измерения горизонтального и вертикального углов. Инструмент состоит из подставки с тремя подъемными винтами (1). На подставке располагаются закрепительный (2) и микрометренный (14) винты лимба (рис. 4.2). Лимб разбит на 360˚ с ценой деления 1˚. Внутри лимба находится алидада, которая сосна с лимбом, и имеющая отсчетное устройство. На алидаде расположены колонки оси вращения зрительной трубы. На защитном корпусе имеется цилиндрический уровень (12) горизонтального круга с юстировочными винтами (11). Цилиндрический уровень служит для приведения инструмента в рабочее положение. На корпусе также расположены закрепительный (13) и микрометренный (3) винты алидады. Зрительная труба (9) представляет собой оптическую систему, состоящую из объектива, окуляра (5) и сетки нитей. На корпусе имеются закрепительный (8) и микрометренный (4) винты зрительной трубы или вертикального круга. Обойма сетки нитей защищена от внешних воздействий предохранительным колпачком (6).

Система осей обеспечивает вращение алидадной части и лимба вокруг вертикальной оси. В качестве отсчетных устройств теодолитов могут применяться шкаловой и штриховой микроскопы рис. 4.3).


Рис. 4.2. Общий вид теодолита Т30: 1 – подъемный винт; 2 - закрепительный винт лимба; 3 – наводящий винт алидады; 4 – наводящий винт трубы;

5 – окуляр отсчетного микроскопа; 6 – колпачок; 7 – оптический визир;

8 – закрепительный винт трубы; 9 – зрительная труба; 10 – кремальера;

11 – юстировочный винт уровня при алидаде; 12 – уровень при алидаде;

13 – закрепительный винт алидады; 14 – наводящий винт лимба


Рис. 4.3. Отсчетные устройства теодолитов: а) шкаловой микроскоп: отсчет по горизонтальному кругу , по вертикальному – (); б) штриховой микроскоп: отсчет по горизонтальному кругу, по вертикальному –

ля измерения углов наклона на теодолите имеется вертикальный круг, лимб которого жестко соединен с осью вращения зрительной трубы.

В комплект инструмента входят окулярные насадки, которые надевают на окуляры зрительной трубы и отсчетного микроскопа. Окулярная насадка представляет собой призму, изменяющую направление визирования на 90˚.

Мнимая ось, прохо­дящая от глаза наблюдателя через крест сетки нитей и совпадающая с оптической осью зрительной трубы, называется визирной осью или визирным лучом.

На боковой крышке теодолита имеется планка-паз для установки ориентир-буссоли, которой служит для определения магнитных азимутов линии местности.

Для установки теодолитов используют штативы, верхняя часть которых представляет собой площадку и называется головкой штатива. Теодолит крепится к головке с помощью станового винта. Ножки штатива снабжены заостренными наконечниками с упорами. Упоры служат для задавливания ножек в грунт для придания инструменту устойчивого положения.

Для визирования на ориентируемую точку при измерении используют вехи или специальные марки.

Читайте также: