В сетях с изолированной нейтралью или с компенсацией емкостных токов допускается работа воздушных

Обновлено: 18.05.2024

1.1. Компенсация емкостного тока замыкания на землю в сетях 6-35 кВ применяется для уменьшения тока замыкания на землю, снижения скорости восстановления напряжения на поврежденной фазе после гашения заземляющей дуги, уменьшения перенапряжений при повторных зажиганиях дуги и создания условий для ее самопогасания.

Основные определения, используемые при характеристике сетей с компенсацией емкостного тока, приведены в приложении 1.

1.2. Компенсация должна применяться при следующих значениях емкостного тока замыкания на землю сети в нормальных режимах ее работы:

в воздушных сетях 6-20 кВ на железобетонных или металлических опорах и во всех сетях 35 кВ - при токе более 10 А;

в воздушных сетях, не имеющих железобетонных или металлических опор: при напряжении 6 кВ - при токе более 30 А, при напряжении 10 кВ - более 20 А, при напряжении 15-20 кВ - более 15 А.

Компенсацию допускается применять также в воздушных сетях 6-10 кВ при емкостном токе менее 10 А.

1.3. Для компенсации емкостного тока замыкания на землю должны применяться дугогасящие заземляющие реакторы с плавным или ступенчатым регулированием индуктивности.

Основные технические характеристики дугогасящих реакторов приведены в приложении 2 (табл. 1-7).

1.4. В электрических сетях, где в процессе эксплуатации емкостный ток замыкания на землю изменяется не более чем на ±10 %, рекомендуется применять дугогасящие реакторы со ступенчатым регулированием индуктивности.

В электрических сетях, где в процессе эксплуатации емкостный ток замыкания на землю изменяется более чем на ±10 %, рекомендуется применять реакторы с плавным регулированием индуктивности, настраиваемые вручную или автоматически.

Автоматическая настройка компенсации рекомендуется в сетях 35 кВ при емкостном токе замыкания на землю более 10 А и в сетях 6-10 кВ при емкостном токе более 50 А.

1.5. Дугогасящие реакторы должны быть настроены на ток компенсации, как правило, равный емкостному току замыкания на землю (резонансная настройка). Допускается настройка с перекомпенсацией, при которой индуктивная составляющая тока замыкания на землю не превышает 5 А, а степень расстройки – 5 %.

Если установленные в сетях 6-20 кВ дугогасящие реакторы со ступенчатым регулированием индуктивности имеют большую разность токов смежных ответвлений, допускается настройка с индуктивной составляющей тока замыкания на землю не более 10 А.

В сетях 35 кВ при емкостном токе менее 15 А допускается степень расстройки не более 10 %.

В воздушных сетях 6-10 кВ с емкостным током замыкания на землю менее 10 А степень расстройки не нормируется.

Настройка с недокомпенсацией допускается только при недостаточной мощности дугогасящего реактора и при условии, что любые аварийно возникающие несимметрии емкостей фаз сети (обрыв проводов, растяжка жил кабеля) не могут привести к появлению напряжения смещения нейтрали, превышающего 70 % фазного напряжения. При недокомпенсации расстройка не должна превышать 5 %.

1.6 . В сетях с компенсацией емкостного тока степень несимметрии фазных напряжений не должна превышать 0,75 % фазного напряжения, а напряжение смещения нейтрали 15 % фазного напряжения.

Допускается напряжение смещения нейтрали в течение 1 ч до 30 % и в течение времени поиска места замыкания на землю – 100 % фазного напряжения.

1.7. Измерения емкостных токов, напряжений несимметрии и смещения нейтрали с целью настройки компенсации емкостного тока должны проводиться при вводе дугогасящих реакторов в работу и при значительных изменениях схемы сети, но не реже одного раза в 6 лет.

2.1. Дугогасящие реакторы должны устанавливаться на питающих подстанциях, связанных с электрической сетью не менее чем двумя линиями электропередачи. Установка реакторов на тупиковых подстанциях не допускается.

2.2. Выбор подстанций для установки дугогасящих реакторов должен производиться с учетом возможного разделения сети на отдельно работающие участки. Реакторы должны размещаться таким образом, чтобы в каждой части сети после ее разделения сохранялась возможность настройки компенсации емкостного тока, близкой к резонансной.

3.1. Мощность реакторов должна выбираться по значению емкостного тока сети с учетом ее развития в ближайшие 10 лет.

При отсутствии данных о развитии сети мощность реакторов следует определять по значению емкостного тока сети, увеличенному на 25 %.

Определение емкостного тока сети для выбора мощности дугогасящих реакторов можно производить путем расчетов (приложение 3).

Расчетная мощность реакторов Q к (кВ × А) определяется по формуле

где U ном - номинальное напряжение сети, кВ;

I с - емкостный ток замыкания на землю, А.

3.2. При применении в сети дугогасящих реакторов со ступенчатым регулированием тока количество и мощность реакторов следует выбирать с учетом возможных изменений емкостного тока сети с тем, чтобы ступени регулирования тока позволяли устанавливать настройку, близкую к резонансной при всех возможных схемах сети.

При емкостном токе замыкания на землю более 50 А рекомендуется применять не менее двух реакторов.

3.3. Для подключения реакторов должны использоваться силовые трансформаторы со схемой соединения обмоток "звезда с выведенной нейтралью - треугольник".

В сетях 35 кВ для этой цели могут использоваться трехобмоточные трансформаторы 110/35/10(6) кВ с обмоткой 10 (6) кВ, соединенной в треугольник.

В сетях 6-10 кВ могут использоваться ненагруженные трансформаторы или трансформаторы собственных нужд (ТСН) с обмоткой 0,4 (0,23) кВ, соединенной в треугольник. В этом случае ТСН должны быть проверены по длительно допустимой нагрузке. Допустимая нагрузка (А) трансформатора определяется по формуле (2).

где I ном.т - номинальный ток трансформатора, А;

I к - ток компенсации реактора, А.

Трансформаторы, используемые для подключения реакторов, приведены в приложении 4 (табл. 12).

3.4. При отсутствии трансформаторов со схемой соединения обмоток "звезда - треугольник" для подключения реакторов допускается использовать ненагруженные трехфазные трансформаторы со схемой соединения обмоток "звезда - звезда". Мощность трансформаторов при этом должна не менее чем в четыре раза быть больше мощности реакторов.

Трансформаторы броневого типа или группы однофазных трансформаторов со схемой соединения обмоток "звезда - звезда" использовать для подключения реакторов недопустимо.

4.1. Рекомендуемые схемы включения дугогасящих реакторов приведены на рис. 1.

Дугогасящие реакторы должны подключаться к нейтралям трансформаторов, генераторов или синхронных компенсаторов через разъединители. В цепи заземления реакторов должен быть установлен трансформатор тока.

Трансформаторы 6 (10) кВ с дугогасящими реакторами в нейтрали должны подключаться к шинам подстанций выключателями. При использовании трансформаторов только для подключения реакторов допускается замена выключателей на трехполюсные разъединители.

4.2. На двухтрансформаторных подстанциях схемы включения дугогасящих реакторов должны предусматривать возможность подключения реакторов как к одному, так и к другому трансформатору (рис. 1, а; 1, б). Нейтрали трансформаторов должны быть разделены разъединителями.

4.3. Применение предохранителей в схемах питания трансформаторов с дугогасящими реакторами в нейтрали недопустимо.

4.4. Установка дугогасящих реакторов в распределительных устройствах должна выполнялся в соответствии с действующими Правилами устройства электроустановок и инструкциями заводов-изготовителей.

Подключение реакторов к трансформаторам рекомендуется выполнять сталеалюминиевыми проводами или шинами сечением 50-70 мм 2 . Допускается выполнять подключение кабелем без стальной бронеленты.

Неиспользуемые обмотки ненагруженных трансформаторов, в нейтрали которых включены дугогасящие реакторы, должны быть, как правило, заземлены путем соединения одного из выводов обмотки с заземляющим устройством подстанции.

4.5. Рекомендуемые схемы сигнализации и контроля работы дугогасящих реакторов приведены в приложении 5.

На сооружаемых и реконструируемых подстанциях приводы разъединителей, которыми дугогасящие реакторы подключаются к нейтралям трансформаторов, должны выполняться с электромагнитной блокировкой, запрещающей отключение под нагрузкой.

На действующих подстанциях, на которых разъединители дугогасящих реакторов выполнены без электромагнитной блокировки, допускается эксплуатация реакторов без блокировки. При этом возле разъединителей должны быть установлены две параллельно включенные сигнальные лампы, подключенные к сигнальной обмотке реакторов (две лампы на случай повреждения одной из них).


Рис. 1 . Схемы включения дугогасящих реакторов:

а - включение одного реактора; б - включение двух реакторов; в - включение реакторов в нейтрали трансформаторов СН; г - включение реактора в нейтраль генератора (синхронного компенсатора)

5.1. В сети с компенсацией емкостного тока замыкания на землю напряжение несимметрии и смещения нейтрали не должно превышать указанных в п. 1.6 значений.

В сетях 35 кВ выравнивание емкостей фаз относительно земли должно выполняться транспозицией проводов (рис. 2), а также распределением конденсаторов высокочастотной связи.

Предварительную оценку напряжения несимметрии сети, а также емкостного тока замыкания на землю следует производить на основании расчетов по удельным емкостям проводов и кабелей относительно земли. Значения удельных емкостей проводов и кабелей и степени несимметрии некоторых линий приведены в приложении 3.

Пример расчета напряжения несимметрии сети и выравнивания емкостей фаз приведен в приложении 6.

5.2. Настройка дугогасящих реакторов должна быть выполнена в соответствии с требованиями п. 1.5.

5.3. В случае выбора настройки с недокомпенсацией допустимость такого режима должна быть проверена расчетом значения напряжения смещения нейтрали при появлении несимметрии емкостей фаз сети.

Пример расчета зависимости степени смещения нейтрали от степени однофазной несимметрии в сети с недокомпенсацией емкостного тока замыкания на землю при появлении несимметрии емкостей фаз, приведен в приложении 7.

5.4. Методы измерений напряжений несимметрии, смещения нейтрали и определения емкостного тока замыкания на землю с целью настройки компенсации емкостного тока приведены в приложении 8.

5.5. При выборе ответвлений дугогасящих реакторов со ступенчатым регулированием тока необходимо учитывать снижение тока реакторов вследствие влияния сопротивления трансформаторов, в нейтрали которых включены реакторы.


Рис. 2 . Транспозиция фазных проводов на воздушных линиях

Действительный ток компенсации I рд (А) определяется по формуле (1).

где - сопротивление трансформатора, Ом;

- сопротивление реактора, Ом;

U ном - номинальное напряжение трансформатора, кВ;

S т - номинальная мощность трансформатора, кВ × А;

U к - напряжение КЗ трансформатора, %;

- номинальное напряжение реактора, В.

В случае использования для подключения реактора трансформатора со схемой соединения обмоток "звезда - звезда" действительный ток компенсации определяется по формуле

5.6. Выбор настроек дугогасящих реакторов со ступенчатым регулированием тока для разных схем сети должен производиться на основании результатов измерений емкостных токов сети и отдельных участков. Результаты выбора настроек реакторов должны быть оформлены в виде карты настроек и храниться у оперативного персонала для контроля режима компенсации емкостного тока.

5.7. Настройка плавнорегулируемых реакторов, не имеющих автоматических регуляторов настройки, должна производиться вручную с помощью измерителей (указателей) настройки или с помощью вольтметра, подключенного к сигнальной обмотке реакторов. Реакторы должны быть настроены на значении тока, при котором напряжение на сигнальной обмотке имеет наибольшее значение.

Для настройки плавнорегулируемых реакторов вручную могут применяться также другие методы, обеспечивающие настройку реакторов, близкую к резонансной.

5.8. Если в одном из режимов работы сети дугогасящий реактор окажется подключенным к шинам подстанции, от которой отходит только одна линия, то на время существования такого режима реактор должен быть выведен из работы.

5.9. Эксплуатация дугогасящих реакторов, текущие и капитальные ремонты должны производиться в соответствии с инструкцией завода-изготовителя и действующими Нормами испытаний электрооборудования.

6.1. Включение или отключение трансформаторов, предназначенных для подключения дугогасящих реакторов, допускается производить только при отключенном дугогасящем реакторе (разъединитель в цепи реактора должен быть отключен).

6.2. Не допускается включать или отключать дугогасящий реактор при возникновении в сети замыкания на землю.

6.3. Переключение ответвлений реактора со ступенчатым регулированием тока может производиться только после отключения реактора.

6.4. Не допускается объединять нейтрали раздельно работающих трансформаторов, к которым подключены дугогасящие реакторы.

6.5. Измерения емкостных токов замыкания на землю, напряжений несимметрии и смещения нейтрали с целью настройки компенсации емкостного тока должны производиться по программам, составленным и утвержденным в установленном порядке.

1. При работе сети с изолированной нейтралью и отсутствии замыкания на землю на нейтрали сети появляется напряжение несимметрии (В), обусловленное несимметрией емкостей фаз относительно земли, которое определяется по формуле

где - вектор напряжения фазы А, В;

С A , С B и С C - емкости фаз относительно земли, мкФ;

а - фазный множитель.

Степень несимметрии напряжений определяется по формуле

2. Емкостный ток замыкания на землю I с (А) определяется по формуле

где w - угловая частота напряжения, с -1 ;

С ф - емкость фазы сети, мкФ;

u ф - фазное напряжение, В.

3. Ток i к (А) компенсации дугогасящего реактора определяется по формуле

где L p - индуктивность реактора, Гн.

4. Степень расстройки компенсации J (%) определяется по формуле

5. В сети с подключенным дугогасящим реактором на нейтрали появляется напряжение смещения нейтрали , определяемое по формуле

где - коэффициент успокоения сети, равный отношению активной составляющей тока замыкания на землю к полному емкостному току сети.

Для воздушных сетей с нормальным состоянием изоляции коэффициент d = 2-6 %. При загрязнениях и увлажнениях коэффициент d может увеличиваться до 10 %.

Для кабельных сетей d = 2-4 %.

Модель вектора напряжения смещения нейтрали равен

степень напряжения смещения нейтрали равна

6. При замыкании на землю в месте повреждения протекает остаточный ток замыкания I з (А), равный

где - дополнительный коэффициент успокоения;

R з - переходное сопротивление в месте замыкания на землю, Ом.

Уменьшения емкостного тока замыкания на землю в системах с изолированной нейтралью до значения, при котором гаснет дуга в месте повреждения, достигают заземлением нейтрали генератора или трансформаторов через дугогасящие реакторы, индуктивное сопротивление которых приблизительно равно емкостному сопротивлению системы, то есть ω*L=1/(3*ω*С).

Наибольшее распространение получили дугогасящие реакторы, состоящие из сердечника и обмотки, расположенных в кожухе, заполненном трансформаторным маслом. Индуктивность реактора L регулируют изменением числа витков или зазора сердечника. Активное сопротивление реактора r мало по сравнению с индуктивным.

Компенсация тока замыкания на землю

При компенсации емкостного тока Iз в месте замыкания индуктивным током IL система может длительно работать с замкнутой на землю фазой, при этом напряжения во всех точках сети имеют те же значения, что и в системе с изолированной нейтралью. показателем эффективности компенсации является отношение количества замыканий на землю, не развившихся в КЗ, к общему числу замыканий. В компенсированных системах этот показатель составляет 0,6-0,9, а в системах с изолированной нейтралью 0,3. В системах с компенсацией емкостного тока на землю не требуется релейная защита от замыкания на землю, действующая на отключение линий, трансформаторов и генераторов, а также электродвигателей, подключенных непосредственно к сети, а достаточно установки избирательной сигнализации. Исключение составляют системы напряжением 3-35 кВ с повышенной опасностью обслуживания оборудования, в которых замыкания на землю должны избирательно отключаться. К ним относятся системы электроснабжения шахт, открытых горных разработок, торфяных разработок и др. компенсация емкостных токов обладает следующими выгодными для эксплуатации качествами: уменьшает ток через место повреждения до безопасного значения, обеспечивая этим надежное дугогашение; облегчает требования к ЗУ; снижает скорость восстановления напряжения на поврежденной фазе, вследствие чего вероятность повторного зажигания дуги и возникновения коммутационных напряжений мала; при сохранении устойчивой дуги уменьшает вероятность перехода замыкания на землю в многофазное КЗ и др.

Системы с изолированной нейтралью и нейтралью, заземленной через реактор, относят к системам с малыми токами замыкания на землю (Iз

Рассмотрим систему, нейтраль которой заземлена через дугогасящий реактор (рисунок а)). Если I(L)=0, y1=y2=y3, Ua+Ub+Uc=0, то векторная диаграмма напряжений и токов системы с компенсацией емкостного тока на землю не отличается от векторной диаграммы для системы с изолированной нейтралью (рисунок в)). В случае однофазного замыкания на землю, например фазы А, токи и напряжения в фазах можно определить по формулам из статьи: Система с изолированной нейтралью.

Но при этом еще возникает индуктивный ток через реактор, который при ω*L >> r равен: I(L)=U(L) / (r+j*ω*L)=jUa / (ω*L), где U(L) — напряжение смещения нейтрали; r — активное сопротивление реактора. Тогда, пренебрегая емкостной асимметрией системы, результирующий тока замыкания на землю можно определить из выражения:
Iз = — (3*Ua) / (Zo+Z1+Z2) = -(Ia+Ib+Ic+I(L) = jUa*(3*ω*C — (1/ω*L)).

Как видно из векторной диаграммы, приведенной на рисунке б), векторы тока реактора I(L) и емкостного тока замыкания на землю Iз сдвинуты относительно друг друга на 180⁰. Поэтому при резонансной настройке реактора [ω*L = 1/(3*ω*С)] его индуктивный ток компенсирует емкостные токи фаз. Однако практически через место замыкания протекает незначительный ток, состоящий из активной и реактивной составляющих. Первая обусловлена активным сопротивлением реактора и системы, вторая — неточной настройкой реактора. Кроме того, этот ток может быть вызван короной на проводах, которая иногда возникает при повышенных в √3 раз напряжениях на неповрежденных фазах и может привести к увеличению емкостных токов и появлению дополнительных активных составляющих токов в фазах, а также токами высших гармоник.

При резонансной или близкой к ней настройке реактора исключается возможность существования устойчивой дуги, что является основным преимуществом рассматриваемого способа заземления нейтрали по сравнению с изолированной нейтралью. Амплитуда перенапряжений при такой настройке не превышает 2,6 Uф. Однако при расстройке компенсации более чем на ±5% перенапряжения в компенсированных системах принимают такие же значения, как и в системах с изолированной нейтралью. При невозможности достичь резонансной настройки предпочтительно иметь небольшую перекомпенсацию (I(L)>3Iс), так как недокомпенсация емкостного тока в аварийных случаях и при несимметрии емкостей фаз может привести к появлению перенапряжений более высокого порядка, чем в системах с изолированной нейтралью.

Эффективность компенсации во многом зависит от совершенства дугогасящих реакторов. Эффективность компенсации при неизменной настройке реактора составляет 0,6. а при использовании реактора с подмагничиванием и автоматической быстродействующей настройкой 0,9.

Дугогасящие реакторы необходимо устанавливать практически во всех системах напряжением 35 кВ, если ток замыкания составляет более 10 А, а также в системах напряжением 3-20 кВ, имеющих линии электропередачи с железобетонными и металлическими опорами с токами замыкания также более 10 А. Компенсация емкостного тока замыкания на землю должна применяться при значениях этого тока в нормальных режимах в системах, не имеющих железобетонных и металлических опор на воздушных линиях: более 30 А при напряжении 3-6 кВ; более 20 А при напряжении 10 кВ; более 15 А при напряжении 15-20 кВ; более 5 А в схемах напряжением 6-20 кВ блоков генератор-трансформатор (на генераторном напряжении). При токах замыкания на землю более 50 А рекомендуется применение не менее двух заземляющих дугогасящих реакторов. Реактор может быть включен в нейтраль одного работающего трансформатора, который при этом получает дополнительную нагрузку. Допускают включение реактора мощностью, равной 50 % мощности трансформатора, при условии, что он будет работать с наибольшим током компенсации не более 2 часов.

К недостаткам систем с нейтралью, заземленной через дугогасящий реактор, можно отнести: повышенные капитальные затраты, вызываемые повышенными требованиями к уровню изоляции электроустановок; сложность эксплуатации из-за необходимости вести постоянное наблюдение за состоянием компенсации и трудности определения места повреждения, если оно не развивалось; возможность повышения напряжения неповрежденных фаз относительно земли более межфазного и существование перенапряжении, если нет точной настройки и дуга устойчива; повышение напряжения в системе при нормальном режиме и аварийном, если система обладает хотя бы небольшой несимметрией; увеличение капитальных затрат и эксплуатационных расходов в связи с установкой дугогасящих аппаратов по сравнению с системой с изолированной нейтралью.

Замыкание на землю — это замыкание, обусловленное соединением проводника с землей или уменьшением сопротивления его изоляции по отношению к земле ниже определенной величины (СТ МЭК 50(151)—78).

Компенсация емкостного тока замыкания на землю в сетях 6-35 кВ применяется для уменьшения тока замыкания на землю, снижения скорости восстановления напряжения на поврежденной фазе после гашения заземляющей дуги, уменьшения перенапряжений при повторных зажиганиях дуги и создания условий для ее самопогасания.

Из рис. 11.1, а видно, что при замыкании фазы на землю обмотка ТН поврежденной фазы оказывается замкнутой накоротко и показания ее вольтметра будут равны нулю. Две другие фазы будут находиться под линейным напряжением, что зафиксируют вольтметры.

В точке замыкания фазы (например, фазы С) на землю проходит ток, равный геометрической сумме емкостных токов неповрежденных фаз, то есть


Чем протяженнее сеть, тем больше ее емкость и, следовательно, тем больше ток замыкания на землю, что вытекает из формулы (11.1).

Опасность замыкания фазы на землю состоит в том, что в месте повреждения, как правило, возникает перемежающаяся заземляющая дуга, длительное горение которой при большом емкостном токе приводит к значительному тепловому эффекту с возможным возникновением междуфазных КЗ, а повышение напряжения двух фаз до линейного значения может привести к пробою дефектной изоляции.


В соответствии с требованиями ПТЭ, токи замыкания на землю не должны превышать следующих значений:


В соответствии с требованиями ПУЭ и Типовой инструкцией по компенсации емкостного тока, компенсация должна применяться при следующих значениях емкостного тока замыкания на землю в нормальных режимах работы сети:

в воздушных сетях 6-20 кВ на железобетонных или металлических опорах и во всех сетях 35 кВ — при токе более 10 А;

в воздушных сетях, не имеющих железобетонных или металлических опор:

при напряжении 6 кВ — при токе более 30 А;

при напряжении 10 кВ — более 20 А;

при напряжении 15–20 кВ — более 15 А;

в схемах генераторного напряжения 6-20 кВ блоков генератор — трансформатор — более 5 А.

Компенсацию допускается применять также в воздушных сетях 6-10 кВ при емкостном токе менее 10 А.

Во избежание превышения указанных значений токов в нейтраль трансформатора включается дугогасящий реактор (рис. 11.1, б), который уменьшает (компенсирует) емкостной ток через место повреждения. При компенсации емкостных токов ВЛ и КЛ могут некоторое время работать с замыканием фазы на землю.

При токе реактора Ip равном емкостному току Ic, имеет место полная компенсация емкостного тока, то есть Iр = Iс = 0, и наступает резонанс токов.

Реактор можно настраивать на работу с недокомпенсацией или перекомпенсацией токов.

Настройка с недокомпенсацией применяется в КЛ и ВЛ, если аварийно возникшая несимметрия емкостей фаз не приводят к возникновению напряжения смещения нейтрали более 0,7 Uф.

При резонансной настройке ток замыкания на землю минимален и перенапряжения в сети не превышают 2,7 Uф. С точки зрения гашения дуги резонансная настройка является оптимальной.

В обычном режиме работы сети имеет место несимметрия напряжения, обычно не превышающая допустимое значение 1,5 %.

При отсутствии замыкания на землю допускается смещение нейтрали не более 0,15Uф.

Ток дугогасящих реакторов регулируется ручным переключением ответвлений с отключением реактора от сети, изменением зазора в магнитной системе при помощи электродвигательного привода без отключения реактора от сети, изменением индуктивности реактора или подмагничиванием постоянным током без отключения реактора от сети.

Автоматизированная компенсированная сеть должна иметь:

дугогасящие реакторы с ручным переключением ответвлений;

подстроечные дугогасящие реакторы с плавным изменением тока компенсации без отключения реактора от сети;

дугогасящие реакторы с автоматическими регуляторами тока компенсации, включающиеся сразу после возникновения замыкания на землю и обеспечивающие резонансную настройку для погашения дуги в месте замыкания.

Перестройка дугогасящих реакторов производится по распоряжению диспетчера, который руководствуется таблицей настройки, составленной для конкретного участка сети на основании результатов измерений токов замыкания на землю, емкостных токов, токов компенсации и напряжений смещения нейтрали.

Дугогасящие реакторы устанавливаются на питающих сеть ПС и подключаются к нейтрали трансформатора через разъединители.

Для перевода реактора с одного трансформатора на другой его сначала отключают разъединителем от нейтрали одного трансформатора, а затем подключают разъединителем к нейтрали другого.

О возникновении замыкания на землю персонал узнает по работе сигнальных устройств, а фаза, замкнувшая на землю, устанавливается по показаниям вольтметров контроля изоляции.

В сигнальном устройстве реле контроля изоляции подключается к выводам дополнительной вторичной обмотки ТН, соединенной по схеме разомкнутого треугольника. При нарушении изоляции фазы на землю на зажимах этой обмотки появляется напряжение нулевой последовательности 3U0, реле КV (рис. 11.1) срабатывает и подает сигнал.

В сетях с компенсацией емкостных токов схемы сигнализации и контроля работы дугогасящих реакторов подключаются к ТТ реактора или к его сигнальной обмотке. К этой же обмотке подключаются без предохранителей также лампы контроля отсутствия замыкания на землю.

По полученным сигналам на ПС нельзя сразу определить электрическую цепь, на которой произошло замыкание на землю, поскольку отходящие линии электрически связаны между собой на шинах. Для определения цепи, на которой произошло замыкание на землю, применяют избирательную сигнализацию поврежденных участков, основанную на использовании токов переходного процесса замыкания или токов высших гармоник, источником которых являются нелинейные цепи.

Широкое распространение на ПС, питающих кабельную сеть, получили устройства с разделительными фильтрами типов РФ и УСЗ, которые реагируют на высшие гармоники, содержащиеся в токе 3I0. Их уровень пропорционален емкостному току сети и в поврежденной линии выше, чем в токах нулевой последовательности неповрежденных линий. Данный фактор и является признаком повреждения на той или иной линии.

Стационарные устройства устанавливаются на щитах управления или в коридорах РУ и при помощи переключателей, кнопок или шаговых искателей при появлении в цепи замыкания на землю поочередно подключаются персоналом к ТТ нулевой последовательности, установленным на каждой КЛ.

Поврежденным считается присоединение, на котором при измерении стрелка прибора отклонится на большее число делений, чем при измерениях на других присоединениях.

Если устройства избирательной сигнализации на ПС отсутствуют или не дают желаемых результатов, отыскание поврежденного присоединения производится путем перевода отдельных присоединений с одной системы шин на другую, работающую без замыкания на землю, или путем деления электрической сети в заранее предусмотренных местах. Для отыскания повреждений также пользуются поочередным кратковременным отключением линий с включением их от АПВ или вручную.

Следует знать, что продолжительность непрерывной работы реакторов под током нормирована: от 2 до 8 ч. Поэтому если отыскание замыкания на землю затягивается, то персонал обязан контролировать температуру верхних слоев масла в баке реактора. Максимальное повышение температуры верхних слоев масла допускается до 100 °C.

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

ФАЗЫ Схему действий типичного серийного убийцы (от момента, когда он впервые начинает обдумывать свое преступление, до неизбежного разочарования, следующего за воплощением преступного замысла) разработал доктор Джоэль Норрис, ведущий эксперт США в данной области.

КОРОТКОЕ ЗАМЫКАНИЕ

КОРОТКОЕ ЗАМЫКАНИЕ Ранним октябрьским утром 1923 года двадцатичетырехлетняя крестьянка из Тамбовской губернии Настя Е. кухонным ножом отрезала своему законному супругу половой член. Муж проснулся от боли, мгновенно уяснил трагедию и заорал:— Что ты наделала!Настя

2.6. Заземление нейтралей трансформаторов. Дугогасящие реакторы для компенсации емкостных токов

2.6. Заземление нейтралей трансформаторов. Дугогасящие реакторы для компенсации емкостных токов Электрические сети 35 кВ и ниже работают с изолированной нейтралью обмоток трансформаторов или заземлением через дугогасящие реакторы, сети 110 кВ и выше — с эффективным

8.2. Характер повреждений в электрических сетях и утяжеленные режимы их работы

8.2. Характер повреждений в электрических сетях и утяжеленные режимы их работы Режим работы ПС представляет собой ее состояние на заданный момент или отрезок времени.Большую часть времени энергосистема работает в установившемся режиме, то есть в режиме работы, при

Глава 11. Предупреждение и устранение аварийных ситуаций в электрических сетях

Глава 11. Предупреждение и устранение аварийных ситуаций в электрических сетях 11.1. Порядок организации работ при ликвидации аварий Аварийная ситуация — это изменение в нормальной работе оборудования, создающее угрозу возникновения аварии. Признаки аварии определяются

11.6. Причины возникновения аварийных ситуаций в электрических сетях и действия персонала по их предупреждению и устранению

11.6. Причины возникновения аварийных ситуаций в электрических сетях и действия персонала по их предупреждению и устранению Практика эксплуатации электрических сетей показала, что к основным причинам повреждений оборудования, как правило, относятся:некачественные

Настройка телефонов в удаленных сетях

Настройка телефонов в удаленных сетях Чуть сложнее обстоит задача при установке станции в Дата-центре. Для удаленной настройки телефонов потребуется объединить офисы с Elastix через VPN. Для этого можно воспользоваться бесплатным дополнением MyVPN Client, чтобы подключить

Супруги запутались в сетях Internet

Супруги запутались в сетях Internet Американскому суду придется рассмотреть необычное бракоразводное дело: Джон Гойдан решил развестись со своей супругой Дианой после того, как узнал о любовной переписке, которую она вела с помощью международной компьютерной сети Internet.

Фазы Схему действий типичного серийного убийцы (от момента, когда он впервые начинает обдумывать свое преступление, до неизбежного разочарования, следующего за воплощением преступного замысла) разработал доктор Джоэль Норрис, ведущий эксперт США в данной области.

3.3.2. Расчет токов короткого замыкания

3.3.2. Расчет токов короткого замыкания Значения токов КЗ определяются по методике расчета токов при симметричных замыканиях без учета подпитки со стороны нагрузок. Для конкретных расчетных условий составляется отдельная схема замещения на основе схемы электрической

Приложение 4 Рекомендуемые значения номинальных токов предохранителей для защит трехфазных силовых трансформаторов 10/0,4 кВ

Приложение 4 Рекомендуемые значения номинальных токов предохранителей для защит трехфазных силовых трансформаторов 10/0,4

Альтернативные фазы сна

Альтернативные фазы сна Мы знаем, что для активной и продуктивной жизни нам требуется в среднем 8 часов полноценного сна. Мы живем в циркадном ритме день – ночь. В то же время у каждого из нас своя работа, цикличность, жизнь и разная потребность в сне, который зависит

Глава 25. Безупречность. Замыкание круга

Глава 25. Безупречность. Замыкание круга Прошли праздники, все разъехались, оставив за собой мороз, снег и пустоту.Знаю, что они, то есть я всегда рядом с ними.Переход 2012, обещанный чудом разрешения всех проблем, оказался невозможен, то есть возможен для каких-то мифических

1.1. Компенсация емкостного тока замыкания на землю в сетях 6-35 кВ применяется для уменьшения тока замыкания на землю, снижения скорости восстановления напряжения на поврежденной фазе после гашения заземляющей дуги, уменьшения перенапряжений при повторных зажиганиях дуги и создания условий для ее самопогасания.

Основные определения, используемые при характеристике сетей с компенсацией емкостного тока, приведены в приложении 1.

1.2. Компенсация должна применяться при следующих значениях емкостного тока замыкания на землю сети в нормальных режимах ее работы:

в воздушных сетях 6-20 кВ на железобетонных или металлических опорах и во всех сетях 35 кВ - при токе более 10 А;

в воздушных сетях, не имеющих железобетонных или металлических опор: при напряжении 6 кВ - при токе более 30 А, при напряжении 10 кВ - более 20 А, при напряжении 15-20 кВ - более 15 А.

Компенсацию допускается применять также в воздушных сетях 6-10 кВ при емкостном токе менее 10 А.

1.3. Для компенсации емкостного тока замыкания на землю должны применяться дугогасящие заземляющие реакторы с плавным или ступенчатым регулированием индуктивности.

Основные технические характеристики дугогасящих реакторов приведены в приложении 2 (табл. 1-7).

1.4. В электрических сетях, где в процессе эксплуатации емкостный ток замыкания на землю изменяется не более чем на ±10 %, рекомендуется применять дугогасящие реакторы со ступенчатым регулированием индуктивности.

В электрических сетях, где в процессе эксплуатации емкостный ток замыкания на землю изменяется более чем на ±10 %, рекомендуется применять реакторы с плавным регулированием индуктивности, настраиваемые вручную или автоматически.

Автоматическая настройка компенсации рекомендуется в сетях 35 кВ при емкостном токе замыкания на землю более 10 А и в сетях 6-10 кВ при емкостном токе более 50 А.

1.5. Дугогасящие реакторы должны быть настроены на ток компенсации, как правило, равный емкостному току замыкания на землю (резонансная настройка). Допускается настройка с перекомпенсацией, при которой индуктивная составляющая тока замыкания на землю не превышает 5 А, а степень расстройки – 5 %.

Если установленные в сетях 6-20 кВ дугогасящие реакторы со ступенчатым регулированием индуктивности имеют большую разность токов смежных ответвлений, допускается настройка с индуктивной составляющей тока замыкания на землю не более 10 А.

В сетях 35 кВ при емкостном токе менее 15 А допускается степень расстройки не более 10 %.

В воздушных сетях 6-10 кВ с емкостным током замыкания на землю менее 10 А степень расстройки не нормируется.

Настройка с недокомпенсацией допускается только при недостаточной мощности дугогасящего реактора и при условии, что любые аварийно возникающие несимметрии емкостей фаз сети (обрыв проводов, растяжка жил кабеля) не могут привести к появлению напряжения смещения нейтрали, превышающего 70 % фазного напряжения. При недокомпенсации расстройка не должна превышать 5 %.

1.6 . В сетях с компенсацией емкостного тока степень несимметрии фазных напряжений не должна превышать 0,75 % фазного напряжения, а напряжение смещения нейтрали 15 % фазного напряжения.

Допускается напряжение смещения нейтрали в течение 1 ч до 30 % и в течение времени поиска места замыкания на землю – 100 % фазного напряжения.

1.7. Измерения емкостных токов, напряжений несимметрии и смещения нейтрали с целью настройки компенсации емкостного тока должны проводиться при вводе дугогасящих реакторов в работу и при значительных изменениях схемы сети, но не реже одного раза в 6 лет.

2.1. Дугогасящие реакторы должны устанавливаться на питающих подстанциях, связанных с электрической сетью не менее чем двумя линиями электропередачи. Установка реакторов на тупиковых подстанциях не допускается.

2.2. Выбор подстанций для установки дугогасящих реакторов должен производиться с учетом возможного разделения сети на отдельно работающие участки. Реакторы должны размещаться таким образом, чтобы в каждой части сети после ее разделения сохранялась возможность настройки компенсации емкостного тока, близкой к резонансной.

3.1. Мощность реакторов должна выбираться по значению емкостного тока сети с учетом ее развития в ближайшие 10 лет.

При отсутствии данных о развитии сети мощность реакторов следует определять по значению емкостного тока сети, увеличенному на 25 %.

Определение емкостного тока сети для выбора мощности дугогасящих реакторов можно производить путем расчетов (приложение 3).

Расчетная мощность реакторов Q к (кВ × А) определяется по формуле

где U ном - номинальное напряжение сети, кВ;

I с - емкостный ток замыкания на землю, А.

3.2. При применении в сети дугогасящих реакторов со ступенчатым регулированием тока количество и мощность реакторов следует выбирать с учетом возможных изменений емкостного тока сети с тем, чтобы ступени регулирования тока позволяли устанавливать настройку, близкую к резонансной при всех возможных схемах сети.

При емкостном токе замыкания на землю более 50 А рекомендуется применять не менее двух реакторов.

3.3. Для подключения реакторов должны использоваться силовые трансформаторы со схемой соединения обмоток "звезда с выведенной нейтралью - треугольник".

В сетях 35 кВ для этой цели могут использоваться трехобмоточные трансформаторы 110/35/10(6) кВ с обмоткой 10 (6) кВ, соединенной в треугольник.

В сетях 6-10 кВ могут использоваться ненагруженные трансформаторы или трансформаторы собственных нужд (ТСН) с обмоткой 0,4 (0,23) кВ, соединенной в треугольник. В этом случае ТСН должны быть проверены по длительно допустимой нагрузке. Допустимая нагрузка (А) трансформатора определяется по формуле (2).

где I ном.т - номинальный ток трансформатора, А;

I к - ток компенсации реактора, А.

Трансформаторы, используемые для подключения реакторов, приведены в приложении 4 (табл. 12).

3.4. При отсутствии трансформаторов со схемой соединения обмоток "звезда - треугольник" для подключения реакторов допускается использовать ненагруженные трехфазные трансформаторы со схемой соединения обмоток "звезда - звезда". Мощность трансформаторов при этом должна не менее чем в четыре раза быть больше мощности реакторов.

Трансформаторы броневого типа или группы однофазных трансформаторов со схемой соединения обмоток "звезда - звезда" использовать для подключения реакторов недопустимо.

4.1. Рекомендуемые схемы включения дугогасящих реакторов приведены на рис. 1.

Дугогасящие реакторы должны подключаться к нейтралям трансформаторов, генераторов или синхронных компенсаторов через разъединители. В цепи заземления реакторов должен быть установлен трансформатор тока.

Трансформаторы 6 (10) кВ с дугогасящими реакторами в нейтрали должны подключаться к шинам подстанций выключателями. При использовании трансформаторов только для подключения реакторов допускается замена выключателей на трехполюсные разъединители.

4.2. На двухтрансформаторных подстанциях схемы включения дугогасящих реакторов должны предусматривать возможность подключения реакторов как к одному, так и к другому трансформатору (рис. 1, а; 1, б). Нейтрали трансформаторов должны быть разделены разъединителями.

4.3. Применение предохранителей в схемах питания трансформаторов с дугогасящими реакторами в нейтрали недопустимо.

4.4. Установка дугогасящих реакторов в распределительных устройствах должна выполнялся в соответствии с действующими Правилами устройства электроустановок и инструкциями заводов-изготовителей.

Подключение реакторов к трансформаторам рекомендуется выполнять сталеалюминиевыми проводами или шинами сечением 50-70 мм 2 . Допускается выполнять подключение кабелем без стальной бронеленты.

Неиспользуемые обмотки ненагруженных трансформаторов, в нейтрали которых включены дугогасящие реакторы, должны быть, как правило, заземлены путем соединения одного из выводов обмотки с заземляющим устройством подстанции.

4.5. Рекомендуемые схемы сигнализации и контроля работы дугогасящих реакторов приведены в приложении 5.

На сооружаемых и реконструируемых подстанциях приводы разъединителей, которыми дугогасящие реакторы подключаются к нейтралям трансформаторов, должны выполняться с электромагнитной блокировкой, запрещающей отключение под нагрузкой.

На действующих подстанциях, на которых разъединители дугогасящих реакторов выполнены без электромагнитной блокировки, допускается эксплуатация реакторов без блокировки. При этом возле разъединителей должны быть установлены две параллельно включенные сигнальные лампы, подключенные к сигнальной обмотке реакторов (две лампы на случай повреждения одной из них).


Рис. 1 . Схемы включения дугогасящих реакторов:

а - включение одного реактора; б - включение двух реакторов; в - включение реакторов в нейтрали трансформаторов СН; г - включение реактора в нейтраль генератора (синхронного компенсатора)

5.1. В сети с компенсацией емкостного тока замыкания на землю напряжение несимметрии и смещения нейтрали не должно превышать указанных в п. 1.6 значений.

В сетях 35 кВ выравнивание емкостей фаз относительно земли должно выполняться транспозицией проводов (рис. 2), а также распределением конденсаторов высокочастотной связи.

Предварительную оценку напряжения несимметрии сети, а также емкостного тока замыкания на землю следует производить на основании расчетов по удельным емкостям проводов и кабелей относительно земли. Значения удельных емкостей проводов и кабелей и степени несимметрии некоторых линий приведены в приложении 3.

Пример расчета напряжения несимметрии сети и выравнивания емкостей фаз приведен в приложении 6.

5.2. Настройка дугогасящих реакторов должна быть выполнена в соответствии с требованиями п. 1.5.

5.3. В случае выбора настройки с недокомпенсацией допустимость такого режима должна быть проверена расчетом значения напряжения смещения нейтрали при появлении несимметрии емкостей фаз сети.

Пример расчета зависимости степени смещения нейтрали от степени однофазной несимметрии в сети с недокомпенсацией емкостного тока замыкания на землю при появлении несимметрии емкостей фаз, приведен в приложении 7.

5.4. Методы измерений напряжений несимметрии, смещения нейтрали и определения емкостного тока замыкания на землю с целью настройки компенсации емкостного тока приведены в приложении 8.

5.5. При выборе ответвлений дугогасящих реакторов со ступенчатым регулированием тока необходимо учитывать снижение тока реакторов вследствие влияния сопротивления трансформаторов, в нейтрали которых включены реакторы.


Рис. 2 . Транспозиция фазных проводов на воздушных линиях

Действительный ток компенсации I рд (А) определяется по формуле (1).

где - сопротивление трансформатора, Ом;

- сопротивление реактора, Ом;

U ном - номинальное напряжение трансформатора, кВ;

S т - номинальная мощность трансформатора, кВ × А;

U к - напряжение КЗ трансформатора, %;

- номинальное напряжение реактора, В.

В случае использования для подключения реактора трансформатора со схемой соединения обмоток "звезда - звезда" действительный ток компенсации определяется по формуле

5.6. Выбор настроек дугогасящих реакторов со ступенчатым регулированием тока для разных схем сети должен производиться на основании результатов измерений емкостных токов сети и отдельных участков. Результаты выбора настроек реакторов должны быть оформлены в виде карты настроек и храниться у оперативного персонала для контроля режима компенсации емкостного тока.

5.7. Настройка плавнорегулируемых реакторов, не имеющих автоматических регуляторов настройки, должна производиться вручную с помощью измерителей (указателей) настройки или с помощью вольтметра, подключенного к сигнальной обмотке реакторов. Реакторы должны быть настроены на значении тока, при котором напряжение на сигнальной обмотке имеет наибольшее значение.

Для настройки плавнорегулируемых реакторов вручную могут применяться также другие методы, обеспечивающие настройку реакторов, близкую к резонансной.

5.8. Если в одном из режимов работы сети дугогасящий реактор окажется подключенным к шинам подстанции, от которой отходит только одна линия, то на время существования такого режима реактор должен быть выведен из работы.

5.9. Эксплуатация дугогасящих реакторов, текущие и капитальные ремонты должны производиться в соответствии с инструкцией завода-изготовителя и действующими Нормами испытаний электрооборудования.

6.1. Включение или отключение трансформаторов, предназначенных для подключения дугогасящих реакторов, допускается производить только при отключенном дугогасящем реакторе (разъединитель в цепи реактора должен быть отключен).

6.2. Не допускается включать или отключать дугогасящий реактор при возникновении в сети замыкания на землю.

6.3. Переключение ответвлений реактора со ступенчатым регулированием тока может производиться только после отключения реактора.

6.4. Не допускается объединять нейтрали раздельно работающих трансформаторов, к которым подключены дугогасящие реакторы.

6.5. Измерения емкостных токов замыкания на землю, напряжений несимметрии и смещения нейтрали с целью настройки компенсации емкостного тока должны производиться по программам, составленным и утвержденным в установленном порядке.

1. При работе сети с изолированной нейтралью и отсутствии замыкания на землю на нейтрали сети появляется напряжение несимметрии (В), обусловленное несимметрией емкостей фаз относительно земли, которое определяется по формуле

где - вектор напряжения фазы А, В;

С A , С B и С C - емкости фаз относительно земли, мкФ;

а - фазный множитель.

Степень несимметрии напряжений определяется по формуле

2. Емкостный ток замыкания на землю I с (А) определяется по формуле

где w - угловая частота напряжения, с -1 ;

С ф - емкость фазы сети, мкФ;

u ф - фазное напряжение, В.

3. Ток i к (А) компенсации дугогасящего реактора определяется по формуле

где L p - индуктивность реактора, Гн.

4. Степень расстройки компенсации J (%) определяется по формуле

5. В сети с подключенным дугогасящим реактором на нейтрали появляется напряжение смещения нейтрали , определяемое по формуле

где - коэффициент успокоения сети, равный отношению активной составляющей тока замыкания на землю к полному емкостному току сети.

Для воздушных сетей с нормальным состоянием изоляции коэффициент d = 2-6 %. При загрязнениях и увлажнениях коэффициент d может увеличиваться до 10 %.

Для кабельных сетей d = 2-4 %.

Модель вектора напряжения смещения нейтрали равен

степень напряжения смещения нейтрали равна

6. При замыкании на землю в месте повреждения протекает остаточный ток замыкания I з (А), равный

где - дополнительный коэффициент успокоения;

R з - переходное сопротивление в месте замыкания на землю, Ом.

Читайте также: