При какой температуре образуется мартенсит отпуска

Обновлено: 24.04.2024

Среди основных задач термической обработки сталей - повышение их прочностных показателей. При этом мартенсит считается одной из главных целей, которые преследуются специалистами по термообработке. Что же представляет собой мартенсит и почему закалённая мартенситная структура является причиной увеличения твёрдости многих марок сталей?

Структура и свойства мартенсита

Один из великих периодов изменений в цивилизации начался тогда, когда железо заменило бронзу. Тем не менее, было совершенно неизвестно, что именно придавало металлу ценные свойства, и на протяжении веков методы производства высококачественной стали хранились почти в алхимических секретах. Очевидно, что железо было основным компонентом, но эмпирически были обнаружены множество других незначительных добавок, для чего применялись экзотические способы охлаждения до комнатной температуры раскаленного докрасна металла.

Окончательно железо заменило бронзу примерно после 1200 г. до н.э. Тогда же было выяснено, что чистое железо - не очень полезный материал: оно мягкое и легко ржавеет. Правда, в Индии, близ Дели, стоит так называемая кутубова колонна, которая каким-то неизвестным образом была изготовлена из чистого железа, и она действительно проявляет высокую антикоррозионную стойкость, но это уже совсем другая история.

Растворяя в железе углерод, можно получить твёрдый, но и очень хрупкий чугун, поэтому такой способ упрочнения не годится. Поэтому поиски наилучшей технологии повышения твёрдости, при сохранении удовлетворительной пластичности, продолжились.

мартенситное превращение

Но не всё оказалось таким однозначным. По мере развития процессов химического анализа выяснилось, что различные стальные сплавы с очень похожим составом обладают совершенно разными механическими свойствами. Химия оказалась неспособной разрешить эту загадку, ответ пришёл из совершенно другой области науки - оптики.

В 1890 году Адольф Мартенс – немецкий специалист в области металлографии, исследуя микроструктуру стали, обнаружил невидимые невооружённым глазом множество различных узоров. Им было установлено, что более твёрдые стали имеют полосчатые области, состоящие из разноориентированных микрокристаллических фаз, в то время как материалы более низкого качества обладают слабой когерентной структурой. Такие узорчатые в честь их первооткрывателя и были названы мартенситными.

Осознание того, что микроскопическое формирование структуры стали может быть столь же важным, как и её состав, стало переломным моментом в металлургии. Так родилось новое научное направление - металлография", были открыты и изучены сотни материалов с мартенситной морфологией.

Морфология мартенсита - это термин, используемый металлургами для описания изучения формы, размера, текстуры и фазового распределения физических объектов. Мартенсит можно наблюдать в микроструктуре в двух совершенно разных формах - реечной или пластинчатой ​​- в зависимости от содержания углерода.

Пластинчатый (двойниковый) мартенсит

Пластинчатые мартенситные структуры отличаются повышенной прочностью, но имеют тенденцию быть более хрупкими. На микроснимках, полученных с помощью электронных микроскопов, хорошо прослеживаются области такого мартенсита, имеющие форму линз. Для сталей, содержащих менее 0,60 % углерода, длинные тонкие пластины двойникового мартенсита часто сгруппированы в пакеты.

стали мартенситного класса

По мере увеличения процентного содержания углерода, так называемые высокоуглеродистые двойники мартенсита, начинают замещать дислокации внутри пластин. Это преобразование сопровождается объёмным расширением, создавая остаточные напряжения (в дополнение к деформациям) из-за внедрения атомов растворённого вещества. Уровень внутренних напряжений, способствующих повышению твёрдости стали, не должен превышать предела её прочности, иначе вероятно растрескивание стального изделия.

Реечный (дислокационный) мартенсит

Реечный мартенсит ассоциируется с высокой ударной вязкостью и пластичностью, но одновременно и с низкой прочностью. В низкоуглеродистых сталях реечные мартенситы в качестве субструктуры содержат дислокации высокой плотности.

Многие реечные мартенситы состоят из двойниковой субструктуры, а не из дислокаций высокой плотности. Кроме того, на границах раздела двойников обнаруживаются наноразмерные выделения, сцепляющиеся с ферритной матрицей. Это явление характерно не только для сталей, но и для титановых сплавов, а также других металлов, которые имеют объёмно-центрированную кристаллическую решётку.

структура мартенсита

Мартенситное превращение в сталях

Мартенситное превращение, хотя и не мгновенное, происходит значительно быстрее, чем контролируемые диффузией процессы. В числе таких процессов - образование феррита и перлита. Их химический состав существенно отличается от аустенита, из которого они произошли. Таким образом, структура мартенсита - это метастабильное, вызванное деформацией состояние, в котором находится сталь. Результирующая твёрдость определяется, в первую очередь, процентным содержанием углерода.

мартенситное превращение

Интенсивность мартенситного превращения также зависит от содержания углерода в стали. Увеличение данного показателя в аустените снижает температуры мартенситного превращения, что приводит к трудностям в превращении всего аустенита в мартенсит. Диапазон температур мартенситного превращения особенно важен при сварке, поскольку определяет состояние остаточных напряжений в свариваемых заготовках. Эти температуры для каждой конкретной марки могут быть рассчитаны, а для наиболее часто используемых марок приводятся в справочниках.

Особенности и сферы применения мартенситных сталей

Состав и свойства мартенситной стали дают ей однозначные преимущества при использовании в напряжённых конструкциях. Вследствие особенностей химического состава правильно подобранным режимом термической обработки и старения (либо отпуска) обеспечивается её закалка и упрочнение.

Нержавеющие стали мартенситного класса характеризуются высокой прочностью и твёрдостью в термически обработанном состоянии. Наибольшее применение находят сплавы, которые содержат 11…17% хрома, 4…15% молибдена, 1,2% углерода и никеля, 0,15…0,63% углерода. По сравнению с другими типами нержавеющей стали пониженное содержание никеля делает стали мартенситного класса менее устойчивыми к коррозии. С другой стороны, высокий процент углерода приводит к тому, что мартенситная сталь имеет весьма прочную молекулярную структуру. Особой прочностью, в том числе, и при ударных нагрузках обладают комплексно легированные мартенситостареющие стали.

структура мартенсита

Обычно рассматриваемые металлы поставляются в отожжённом состоянии, что удобно для проведения операций пластического формоизменения - вырубки, гибки, вытяжки или выдавливания. После деформации, если требуется, можно выполнять и последующую термообработку, в результате которой механические свойства стали достигают необходимых значений. Исключение составляют марки, подвергающиеся предельно возможным степеням деформации, когда предел прочности увеличивается вследствие деформационного упрочнения.

  • Изготовление столовых приборов и кухонной посуды;
  • Производство хирургические и стоматологические инструменты;
  • Изготовление деталей, которые работают в условиях высоких эксплуатационных нагрузок (пружины, ножницы, промышленные ножи);
  • Автомобилестроение, транспортная и дорожно-строительная техника;
  • Инструментальное производство отвёрток, плоскогубцев, степлеров и т.д.
  • Все мартенситные марки сталей являются магнитными, причём как в отожжённом, так и в закалённом (термообработанном) состоянии.

стали мартенситного класса

Все стали, содержащие мартенсит, должны быть отпущены. Дело в том, что закалённый мартенсит образует твердую хрупкую микроструктуру, поэтому следует обеспечивать тонкий баланс, необходимый между прочностью и ударной вязкостью. При отпуске мартенсит частично разлагается на феррит и цементит. Отпущенный мартенсит не такой твёрдый, как только что закаленный, однако он практически сохраняет свою исходную твёрдость, приобретая более мелкозернистую структуру.

Образование мартенсита не ограничивается только сталями. Ряд сплавов также отличается кристаллографическими изменениями аналогичной природы.

Основным отличием, которое приводит к изменению физических и механических характеристик стали является изменение внутренней структуры. Её называют мартенситная структура. В этом случае кристаллическая решётка претерпевает следующие изменения. Под воздействием внешних факторов происходит изменение направления движения атомов по сравнению с их стандартным, упорядоченным движением в рамках установленной решётки. Увеличиваются межатомные расстояния, что приводит к возникновению деформации, примерно на 10% относительно нормальных размеров. Величина изменений не приводит к переходу через энергетический барьер межатомных связей. Такой кристаллический эффект приводит к образованию специфической формы взаимных связей. Она носит так называемый игольчатый характер.


Изменения структуры стали происходит в процессе нагрева. Повышение температуры вызывает диффузионное перераспределение атомов углерода в рамках кристаллической решётки. Этот процесс вызывает образование нескольких фаз металла.

  1. При повышении содержания углерода до 6,7% возникает материал называемый цементит. Он имеет решётку в форме ромба.
  2. При низком содержании углерода (не более 0,02%) формируется феррит. Его решётка приобретает объёмно-центрированную форму.
  3. Аустенит. Структура железоуглеродистых сплавов, представляющих смесь углерода в количестве около 2% различных легирующих добавок. Кристаллическая решётка этого материала имеет форму куба со строго центрированными гранями. Отличительной особенностью аустенита является его высокая плотность по сравнению с другими структурами стали. Он образуется при температуре нагрева от 910 до 1401 °С и сохраняет свою устойчивость до температуры 723 °С. При дальнейшем охлаждении превращается в другие более устойчивые структуры. При добавлении никеля, марганца или хрома аустенит сохраняет свою структуру вплоть до комнатной температуры. К сталям, имеющим аустенитную структуру, относятся почти все хромоникелевые стали.
  4. Перлит является механической смесью цементита и феррита. В этой смеси присутствие углерода составляет 0,8%. Он образуется из аустенита в процессе охлаждения. Он является эвтектоидом и может обладать пластичной или зернистой структурой. От этого состояния зависят его физические и особенно механические свойства.
  5. При повышении содержания углерода до 4,3% из смеси аустенита и цементита образуется материал, называемый ледебурит. Его формирование происходит при температуре расплава в 1147 °С.
  6. Мартенсит – это перенасыщенный раствор железа и углерода. Его обычно получают при закалке аустенита. В результате температурного воздействия мартенситный материал приобретает из кубической тетрагональную решётку, которая придаёт ему твердость до 1000 HV.


В результате обработки полученная мартенситная сталь приобретает игольчатую структуру, которая формирует более высокие прочностные характеристики, становится устойчивее к воздействию коррозии

Общие сведения о мартенсите

Структура на основе перенасыщенного твердого раствора углерода в железе называется мартенсит. Получается он методом переохлаждения аустенитной фазы. Другими словами, мартенсит – результат проведения закаливания сталей с содержанием углерода выше 0,3%. Кристаллы мартенсита имеют тетрагональную структуру, где атомы железа занимают место в узлах решетки.

На вид мартенсит представляет собой множественные темные иглы железа на светлом фоне. Угол наклона данных игл в среднем составляет 60 градусов относительно друг друга. Обнаружить следы углерода на поверхности мартенсита невозможно, т. к. он полностью находится в растворенном состоянии.

структура мартенсита

Мартенсит выделяется прочностью по сравнению с остальными фазами. Механические свойства до определенного момента в прямой зависимости от количества углерода в стали. Но стоит заметить, что после прохождения определенной отметки прочность падает, и начинает повышаться хрупкость.

Согласно исследованиям, проводимым в 30-х годах прошлого столетия советскими учеными, причины высоких механических характеристик мартенсита кроются в следующем:

  • Структура мартенсита имеет блочный характер, при том что сами блоки обладают достаточно малыми размерами.
  • Сопротивление статическим искажениям, что означает устойчивость положения атомов при их смещении от идеального размещения атомов в кристаллической решетке.
  • В случае воздействия механических нагрузок, и как следствие пластической деформации, выделяются мельчайшие твердые частицы, блокирующие скольжение слоев относительно друг друга и повышающие твердость сплава.

Твердость мартенсита имеет валатильный характер и зависит от температуры нагрева, охлаждения и времени выдержки стали. В среднем ее значение колеблется в пределах 35 — 70 единиц по шкале Роквелла. Также мартенсит выделяется большим удельным объемом. Его значение выше по сравнению с другими фазовыми структурами такими как аустенит, перлит и т. д.

Как следствие от всего вышесказанного, образование мартенсита сопровождается значительными изменениями стали в объеме. Это, в свою очередь, приводит к нежелательному повышению внутренней напряженности в структуре, которая в будущем может стать причиной появления трещин.

Свойства мартенсита

В зависимости от методов обработки мартенсит подразделяется на несколько категорий:

Все эти разновидности – это сталь мартенситного класса, обладающая своими специфическими свойствами. Во всех случаях мартенсит представляет собой определённую марку стали. Например: 20Х13, 10Х12НДЛ, Х5ВФ, Х5М и многие другие.


К основным свойствам мартенситных сталей относится:

  • повышенная устойчивость к воздействию агрессивных растворов (кислотных или щелочных);
  • антикоррозийная стойкость к повышенному содержанию влаги;
  • высокая жаропрочность (особенно после проведения процедуры закалки);
  • способность к так называемому самозакаливанию;
  • повышенные показатели прочности (твёрдость мартенсита превосходит многие марки сталей);
  • устойчивость к вредному воздействию водорода;
  • невысокая пластичность;
  • трудности в обработке.

Два основных свойства твердость и антикоррозийная стойкость достигаются за счёт специальной обработки и добавлением соответствующих химических элементов. Мартенситная твёрдость в зависимости от содержания углерода может достигать достаточно высоких значений по основным шкалам оценки.

Особенности образования

Аустенит – это структура, которая формируется в процессе нагревания стали. При достижении критической температуры перлит и феррит образуют целостное вещество.

  1. Равномерное, до достижения необходимого значения, непродолжительная выдержка, охлаждение. В зависимости от характеристик сплава, аустенит может быть как полностью сформирован, так и частично.
  2. Медленное повышение температуры, длительный период поддержания достигнутого уровня теплоты с целью получения чистого аустенита.

Свойства полученного разогретого материала, а также того, который будет иметь место в результате охлаждения. Очень многое зависит от уровня достигнутого тепла. Важно не допустить перегрев или перепал.

Мартенситное превращение

Данный процесс протекает в стали при высоких скоростях охлаждения. Оно должно быть непрерывным в течение всей процедуры. Мартенситное превращение в стали основано на полиморфном превращении двух аллотропических модификациях железа (альфа-железа Fea и гамма-железа Feg). Обладая температурным полиморфизмом, оба эти вида железа имеют свои кристаллические решётки. Первое формируется в объёмно-центрированную кубическую решётку. Второе в гранецентрированную кубическую решётку. При нагреве стали до 911 °С вплоть до температуры плавления 1593 °С наблюдается устойчивость альфа-железа. При охлаждении со скоростью, превышающей критическую, проявляется эффект преобразования. В этот период аустенит превращается в мартенсит. Механизм этого процесса обладает следующими особенностями:

  1. Бездиффузионный характер проявляется благодаря существующему сдвиговому механизму. Благодаря ему атомы кристаллической решётки смещаются на небольшое расстояние, которое по величине меньше межатомных связей. Происходит изменение формы кристаллической решётки. Самодиффузии атомов железа не происходит.
  2. Образовавшиеся кристаллы мартенсита приобретают геометрическую форму пластин. К краю пластины наблюдается уменьшение линейного размера. Поэтому мартенситная структура кристаллов называется игольчатая. Процесс образования пластины заканчивается в двух случаях: на границе зерна аустенита, или при её изломе. Последующие пластины будут образовываться под углом 60° или 120°. Такое образование называется когерентный рост, который протекает при минимальной поверхностной энергии. Однако из-за различия структуры и объёма аустенита и мартенсита в стали наблюдается возникновение больших напряжений. Они достигают величины предела текучести аустенита. Это приводит к отрыву решётки мартенсита от решётки аустенита и когерентность нарушается, что приводит к остановке роста кристаллов.
  3. Абсолютные смещения атомов при мартенситном превращении могут достигать относительно больших размеров в межатомных связях (по сравнению с макроскопическими размерами). Это является следствием действия сдвигового механизма. Происходит изменение формы аустенита и образования на поверхности характерной игольчатой структуры.
  4. Несмотря на разницу кристаллических решёток мартенсита и аустенита, между ними существует некоторое кристаллическое соответствие. Оно выражается в ориентационном сходстве.
  5. Наиболее часто встречающейся формой кристалла после мартенситного преобразования является пластина или так называемая линза. Толщина каждой из них сравнима с остальными геометрическими размерами, сохраняя сложное внутреннее строение. Полученная форма мартенситного кристалла при превращении сохраняет минимум упругой энергии.
  6. Процесс образования кристаллов протекает при очень высоких скоростях. Она может достигать 1000 м/с. По результатам проведенных оценок время формирования кристаллов при мартенситном превращении не превышает 10-7 секунды. Это усложняет процесс контроля над образованием мартенсита.
  7. Сам процесс мартенситного превращения протекает только при быстром непрерывном охлаждении. Температура мартенситного превращения зависит от марки стали (то есть её состава). Температуру начала образования мартенсита обозначают индексом Мн, а температуру конца Мк. Этот температурный интервал в основном зависит от количества, содержащегося в стали углерода. Он не зависит от скорости процесса охлаждения.

Процесс мартенситного превращения не заканчивается полным образованием мартенсита. В стали остаётся остаточный аустенит. Его количество повышается при снижении точки начала превращения.

Влияние закалки на особенности распада аустенита. Мартенсит

Закалка – это вид термической обработки, суть которого заключается в быстром нагревании до высоких температур выше критических точек Ac3 и Acm, после чего следует быстрое охлаждение. Если снижение температуры происходит с помощью воды со скоростью больше 200˚С за секунду, то образуется твердая игольчатая фаза, имеющая название мартенсит.

Он являет собой пересыщенный твердый раствор проникновения карбона в железо с кристаллической решеткой типа α. Вследствие мощных перемещений атомов она искажается и формирует тетрагональную решетку, что и выступает причиной упрочнения. Сформированная структура имеет больший объем. В результате этого кристаллы, ограниченные плоскостью, сжимаются, зарождаются игольчатые пластины.

Мартенсит – прочный и очень твердый (700-750 НВ). Образуется исключительно в результате высокоскоростной закалки.

Область применения

Обладая специфическими, а в некоторых случаях уникальными свойствами стали мартенситной группы применяются для изготовления деталей, работающих в сложных технических и химических условиях. Из них изготавливают:

  • элементы газовых и паровых турбин (в частности роторы, диафрагмы, лопатки и корпуса);
  • детали сварочных аппаратов;
  • сосуды высокого давления, которые должны выдерживать 16 МПа;
  • комплектующие насосов высоко давления;
  • пружины способные выдерживать большие нагрузки;
  • отдельные детали котлов, трубопроводов, коллекторов по которым проходит жидкость с высокой температурой или пар;
  • инструменты различного назначения (режущие, измерительные, обрабатывающие);
  • медицинские инструменты и отдельные части оборудования.


Основными недостатками таких сталей являются: трудности, возникающие при механической обработке и сварке отдельных деталей. Для решения второй задачи необходимо создавать специальные условия для сварки.

Закалка. Диффузионные структуры

Аустенит – это формирование, из которого могут быть искусственно произведены бейнит, троостит, сорбит и перлит. Если охлаждение закалки происходит на меньших скоростях, осуществляются диффузионные превращения, их механизм описан выше.

Бейнит – это промежуточная фаза, которая являет собой еще более дисперсную смесь кристаллов высокоуглеродистого феррита и цементита. По механическим и технологическим свойствам уступает мартенситу, но превышает троостит. Образуется в температурных интервалах, когда диффузия невозможна, а силы сжатия и перемещения кристаллической структуры для превращения в мартенситную – недостаточно.

Сорбит – крупнодисперсная иглообразная разновидность перлитных фаз при охлаждении со скоростью 10˚С за секунду. Механичесие свойства занимают промежуточное положение между перлитом и трооститом.

Перлит – это совокупность зерен феррита и цементита, которые могут быть зернистой или пластинчатой формы. Формируется в результате плавного распада аустенита со скоростью охлаждения 1˚С за секунду.

Бейтит и троостит – более относятся к закалочным структурам, тогда как сорбит и перлит могут формироваться и при отпуске, отжиге и нормализации, особенности которых определяют форму зерен и их размер.

Физический механизм образования мартенсита принципиально отличается от механизма других процессов, происходящих в стали при нагреве и охлаждении. Другие процессы диффузионны, то есть атомы перемещаются с малой скоростью, например, при медленном охлаждении аустенита создаются зародыши кристаллов феррита и цементита, к ним в результате диффузии пристраиваются дополнительные атомы и, наконец, весь объём приобретает перлитную или феррито-перлитную структуру. Мартенситное превращение бездиффузионно (сдвиговое превращение), атомы перемещаются с большой скоростью по сдвиговому механизму, скорость распространения порядка тысячи метров в секунду.

Мартенситное превращение[ | ]

Основная статья: Мартенситное превращение

Мартенситное превращение при охлаждении происходит не при постоянной температуре, а в определённом интервале температур, при этом превращение начинается не при температуре распада аустенита в равновесных условиях, а несколькими сотнями градусов ниже. Оканчивается превращение при температуре значительно ниже комнатной. Таким образом, в интервале температур мартенситного превращения в структуре стали, наряду с мартенситом, есть и остаточный аустенит. Температуры как начала, так и окончания мартенситного превращения могут сильно зависеть от концентраций легирующих элементов.

При пластической деформации стали при температурах мартенситного превращения количество мартенсита увеличивается. В некоторых случаях также влияет упругая деформация. Возможно превращение аустенита в мартенсит при комнатных температурах под действием пластической деформации.

Кроме железоуглеродистых сплавов, мартенситное превращение наблюдается и в некоторых других материалах, например, сплавах на основе титана (сплавы типа ВТ6, ВТ8, ВТ14), меди (бронзы типа БрАМц 9-3), материалах с памятью формы, оксидных материалах (ZrO2).

Существует две очень важных температуры при закалке стали – температура начала мартенситного превращения Мн и температура конца мартенситного превращения Мк.

Существует две очень важных температуры при закалке стали – температура начала мартенситного превращения Мн и температура конца мартенситного превращения Мк.

Роль границ аустенитных зерен

Когда аустенит превращается при охлаждении в какую-либо другую фазу, то эта новая фаза всегда сначала формируется или зарождается на старых границах зерен аустенита. Например, если перлитную сталь У8 сначала нагрели до полного аустенита при температуре 850 °С, а затем охладили на воздухе до 650 °С, то малые зерна перлита будут образовываться на старых границах аустенитных зерен сразу после того как температура упадет ниже 727 °С. Когда температура достигнет 650 °С, эти зерна начнут расти, но между ними еще будет оставаться некоторое количество аустенита. Если образец продолжать держать при 650 °С, то перлитные зерна будут расти пока не закончится весь аустенит.

Влияние степени переохлаждения аустенита

Рассмотрим также альтернативную термическую обработку, когда образец охлаждают от температуры 850 °С в горячей жидкости при температуре 650 °С. такая обработка обеспечивает охлаждение образца до температуры 650 °С намного быстрее, чем при охлаждении на воздухе. Последовательность распада аустенита будет та же самая – маленькие перлитные зерна зарождаются на старых границах аустенитных зерен и растут в оставшийся аустенит, пока он весь не закончится.

Что же измениться по сравнению с охлаждением на воздухе? Более быстрое охлаждение даст три различия:

  • перлитные зерна будут расти быстрее;
  • расстояние между пластинками цементита в перлите будет намного меньше;
  • перлитные зерна будут меньше, так как их будет зарождаться больше на границах аустенитных зерен.

Рост перлита и рост мартенсита

Теперь предположим, что сталь У8 охлаждается в баке с водой при еще более низкой температуре, например, при комнатной. При такой низкой температуре охлаждения можно ожидать образования мартенсита и значительного упрочнения стали. Что общего и в чем различия между образованием мартенсита при комнатной температуре и перлита при температуре 650 °С? Подобно перлиту мартенсит будет начинать формироваться вдоль границ аустенитных зерен, но в отличие от перлита мартенсит растет в аустенит огромной скоростью. Перлит растет в аустенит со скоростью примерно 50 мкм/с при 650 °С и даже медленнее при более высоких температурах. Мартенсит же растет в аустенит почти со скоростью звука 4510 м/с (в стали, а не в воздухе) при любой температуре, при которой он образуется. Кроме того, в отличие от перлита, который полностью заменяет аустенит просто путем достаточно длительной выдержки образца при пониженной температуре.

Интервал температуры мартенситного превращения

Мартенсит же не будет заменять весь аустенит, пока температура закалки не станет ниже температуры, которую называют температурой конца мартенситного превращения Мк.

Более того, мартенсит и вовсе не начнет образовываться, пока закалочная температура не опустится ниже температуры начала мартенситного превращения Мн.

Если температура закалки находится между Мн и Мк, то только часть аустенита превратиться в мартенсит, а оставшийся аустенит – остаточный аустенит – будет продолжать находиться в стали.

Рисунок ниже представляет график, который иллюстрирует зависимость количества образовавшегося мартенсита от температуры закалки.

Рисунок – Зависимость количества мартенсита от температуры закалки

Значком М50 обозначена температура, при которой образуется 50 % мартенсита. Если сталь охладить до температуры М50, то 50 % аустенита в ней превратится в мартенсит. Причем это произойдет в течение миллисекунд после достижения температуры М50. Однако оставшиеся 50 % аустенита, которые окружают мартенсит, будут оставаться, как остаточный аустенит до тех пор, пока температура не изменится.

Фазовая диаграмма стали и мартенсит

Необходимо отметить, что фазовая диаграмма стали предсказывает, что весь аустенит должен исчезнуть, когда температура стали опустится ниже температуры А1. Более того, она требует, чтобы ниже точки А1 сталь состояла из феррита и цементита. Однако с закаленными сталями оба этих правила нарушаются – фазовая диаграмма правильно отражает зависимость фаз от температуры только при достаточно медленном охлаждении.

Мартенсит – метастабильная фаза

При высоких скоростях охлаждения появляется новая фаза – мартенсит, которую не предсказывает фазовая диаграмма. Такие фазы называют метастбильными, то есть неустойчивыми. Если мартенсит нагреть, как в процессе отпуска, то он переходит к более стабильным фазам. Эти стабильные фазы уже должны быть на фазовой диаграмме – нагрев мартенситных структур до температуры ниже А1превращает и мартенсит, и остаточный аустенит в смесь феррита и цементита.

Температура начала мартенситного превращения в сталях очень сильно зависит от содержания углерода аустените.

Мартенситное превращение и содержание углерода

На рисунке 1 показаны температуры начала и конца мартениситного превращения Мн и Мк для обыкновенных углеродистых сталей в зависимости от содержания углерода. Температура Мк имеет довольно значительный разброс. Закалка стали производится чаще всего в воде при комнатной температуре. Эта температура отмечена горизонтальной линией Ткомн. Эта линия позволяет оценить при каком содержании углерода возможна полная закалка при комнатной температуре или сколько остаточного аустенита будет в стали после закалки. Согласно рисунку 1 закалка при комнатной температуре уже при содержании углерода 0,3-0,4 % становиться неполной, так как при таком содержании углерода температура Ткопускается ниже комнатной температуры.

Рисунок 1 – Зависимость температур начала Тн и конца Тк мартенситного превращения от содержания углерода в аустените

Остаточный аустенит и содержание углерода

Количество в процентах остаточного аустенита в стали определяют рентгеновским методом. На рисунке 2 показаны результаты таких измерений объемной доли остаточного аустенита в закаленных обыкновенных углеродистых сталях в зависимости от содержания в них углерода. Также как и у температуры Тк наблюдается большой разброс данных. Например, для стали с содержанием углерода 1,4 % процентная доля остаточного аустенита находится в пределах от 28 до 45 %.

Рисунок 2 – Объемная доля в процентах остаточного аустенита в зависимости от содержания углерода для обыкновенных углеродистых сталей, закаленных до комнатной температуры

График на рисунке 2 дает возможность сделать следующие выводы:
1) Стали с полным реечным мартенситом (содержание углерода меньше 0,6 %) не будут иметь значительного количества остаточного аустенита.
2) Стали с полностью пластинчатым мартенситом (содержание углерода более 1 %) будут иметь значительное количество остаточного аустенита. Чем больше содержание углерода, тем больше количество остаточного аустенита.

Закаленная сталь типа У8 с содержанием углерода 0,77 % будет имеет смешанную реечно-пластинчатую структуру мартенсита и содержать 6-10 % остаточного аустенита. Вообще говоря, это очень трудно увидеть в оптический микроскоп остаточный аустенит между мартенситными пластинами до тех пор, пока его содержание не станет около 10 %.

мартенситное превращение

В результате нагревания углеродистой стали до состояния аустенита и последующего быстрого охлаждения, в кристаллической решетке углеродистой стали совершаются структурные изменения: кубическая решетка аустенита превращается в тетрагональную. Это происходит потому, что углерод не успевает выделиться из аустенита и задерживается в структуре феррита, искажая ее форму.

Легирующие элементы, растворенные в аустените, производят сходственный эффект. Вновь образованная фаза имеет игольчатую или пластинчатую структуру и называется мартенситом, а процесс перестройки кристаллической решетки мартенситным превращением. Для мартенситных структур характерны прочность и твердость.

Мартенситное превращение изучалось при термообработке стали, и вначале этот термин использовался для процесса образования мартенсита в стали, но затем было установлено, что аналогичные превращения можно распространить и на другие полиморфные материалы.

Мартенситные превращения в сталях

Теория получения мартенситных сталей

Во время закалки углеродистой стали, содержащей более 0, 25 – 0,3% углерода, наблюдается резкое изменение ее свойств. Сталь получает структуру мартенсита. При определенной температуре нагревания и последующем охлаждении из аустенитных зерен образуются кристаллы мартенсита.

В основе полиморфного мартенситного превращения лежит бездиффузный механизм превращения гамма-железа аустенита с гранецентрированной кубической решеткой кристаллов (ГЦК) аустенита в альфа-железо с объемно центрированной решеткой (ОЦК) мартенсита.

Процесс перекристаллизации происходит с высокими почти дозвуковыми скоростями, благодаря когерентной связи растущих кристаллов мартенсита с исходными кристаллами аустенита. Чем больше структурное и размерное соответствие, тем тоньше иглы мартенсита.

Мартенситная структура представляет собой пересыщенный раствор углерода в альфа-железе, его кристаллы имеют форму призмы. От концентрации углерода и легирующих элементов зависит увеличение длины призмы и уменьшение ее основания, и соответственно повышение прочности и твердости мартенситной стали. Вследствие большой упругости и малой подвижности атомов мартенситное превращение происходит путем кооперативного координированного смещения атомов на расстояния меньше межатомных. Вновь образованная мартенситная фаза является неравновесной системой.

Благодаря пластинчатой (игольчатой) форме кристаллов и пластической деформации (фазовому наклепу), происходящему по мере увеличения несоответствия в положении атомов и нарушения когерентности, мартенситные структуры обладают более высокой прочностью, твердостью и меньшей пластичностью по сравнению с исходными кристаллами аустенитной структуры. Существуют гипотезы о волновой природе процесса пластической деформации.

кристаллическая решетка мартенсита

Свойства мартенсита

  • Искажением кристаллической решетки от внедрения углерода или легирующих элементов.
  • Дроблением субзерен, или блочной структуры.
  • Увеличением плотности дислокации.

4 типа мартенситных кристаллов стали

  • Тонкопластинчатый.
  • Бабочкообразный.
  • Пластинчатый (линзовидный, двойниковый).
  • Пакетный (массивный, реечный, недвойникоый).

Пакетный тип мартенсита (пластины образуют пакет). Пакетное строение у сталей марок 10Х2Г3М, 12Х2Н4, 40ХН, 37ХН3, 30ХГС, 45ХНМФА.

В некоторых высоколегированных сталях образуется тонкопластинчатый мартенсит.

Бабочкообразный тип в своей структуре имеет сочленения пластин двух пластин, похожие на бабочку. Распространен у легированных сталей.

Пластинчатый тип мартенсита на срезе имеет линзовидное строение, напоминающее иглы. Такое строение после закалки наблюдается у углеродистых сталей У2, У12 и высоконикелевых Н31, Н32.

Пакетный тип характеризуется пакетами, образованными из блоков пластин. Пакетное строение у сталей марок 12Х2Н4, 37ХН3, 30ХГС.

Мартенситные точки

Основной характеристикой сплавов при определенном режиме закалке является мартенситные точки.

Температура начала мартенситных превращений обозначается Мн. При достижении температуры охлаждения стали значений Мн начинается мгновенный лавинообразный процесс перекристаллизации стали. Температура Мн определяется для каждой марки стали экспериментальным путем на металлургических предприятиях. Значение Мн снижается от увеличения количества углерода и легирующих элементов в составе стали.

Температура конца мартенситных превращений обозначается Мк. В промежутке значений температур между Мн и Мк происходит бездиффузная перестройка кристаллической решетки стали. При достижении температуры Мк бездиффузная перекристаллизация прекращается. Для высокоуглеродистых легированных сталей она может быть отрицательной.

мартенситные стали

Практика термической обработки сталей на мартенсит

На крупносерийных и массовых производствах для закалки стальных изделий используют автоматические конвейерные линии, на которых производится полный цикл получения необходимой мартенситной структуры для определенных марок стали.

В инструментальных цехах и на опытных производствах инструмент и детали закаляют вручную путем нагрева инструмента в муфельных печах, в ваннах с маслами, солями или расплавленными металлами. Охлаждение производится в разных средах: воде, масле, воздухе. Параметры температур и процесса закалки разрабатывает технолог согласно техническим нормам и марочникам стали.

Поверхностный нагрев осуществляют в тех случаях, когда нужно повысить прочность наружных слоев изделий при сохранении мягкой сердцевины. Поверхностная закалка производится в генераторах высокой частоты.

В зависимости от требуемой температуры нагрева применяют различные соли или смеси солей; так при высокотемпературных нагревах (1000-1300 градусов), используют расплавленный хлористый барий, при нагревах до 750-950 градусов используют смеси солей хлористого бария, хлористого калия и хлористого натрия. При низкотемпературных нагревах 300-550 градусов используют смеси калиевой и натриевой селитр.

В качестве охлаждающих сред при закалке на мартенсит чаще всего применяют жидкие среды различной охлаждающей способности. Обычно используют воду, а скорость отвода теплоты увеличивают добавлением едкого натра. К более мягким охладителям относятся масла – минеральные и трансформаторные.

Виды закалки на мартенсит

  • Непрерывная, или закалка в одной среде.
  • Закалка в двух средах.
  • Ступенчатая закалка.
  • Обработка холодом.

После нагревания стального изделия до температуры аустенитной фракции, его резко охлаждают либо в воде (самый простой вариант), либо в подогретых маслах, либо на воздухе в зависимости от состава стали. При таком способе охлаждения появляются коробления, а иногда и трещины.

Во избежание рисков используют закалку в двух средах. После нагрева изделие погружают в воду, некоторое время выдерживается, и затем дальнейшее охлаждение до температуры до Мк происходит в более мягкой среде. Этот способ походит для серийных производств.

При ступенчатой схеме охлаждения, сталь, погружают в охлаждающую жидкость, с температурой, превышающей Мп на 60-100 градусов, выдерживают расчетное время, и в дальнейшем охлаждают на спокойном воздухе. Такому виду охлаждения подвергают малогабаритный инструмент из средне- и низколегированных сталей.

К охлаждению в холоде (жидком азоте) обычно прибегают в случаях, когда Мк для марки стали оказывается ниже нуля. Это высоколегированные углеродистые марки, используемые для изготовления мерительного инструмента и элементов подшипников качения.

мартенситная сталь

Применение мартенситных марок стали

В мартенситные стали добавляют легирующие элементы, чтобы получить нужные свойства сплавов: прочность, износостойкость, хладо-жаропрочность, коррозийную стойкость. В одной марке легированной стали может быть до 7 легирующих элементов. Стали легируют никелем, хромом, азотом, вольфрамом, бериллием, ванадием, кремнием, молибденом, медью, бором.

Обычно в обозначении стали зашифрованы легирующие добавки и их количество (38ХН3МФА), некоторые экспериментальные шифруются буквой Э. В этом случае буква не отражает состава стали – ЭИ, ЭП3. Иногда стали, предназначенные для изготовления выпускных авиационных и автомобильных клапанов, называют сокращенно – сильхромы.

Легированные мартенситные стали способны противостоять агрессивным среда: кислотам, щелочам, солям, агрессивным газам. По применению мартенситные стали бывают коррозионностойкие, жаростойкие, жаропрочные и стали специального назначения.

Коррозионностойкие марки сталей (15Х28, 20Х13, 12Х18Н9) применяют на опытных производствах, в химической промышленности.

Жаростойкие марки сталей (ХН60Ю, 12Х25Н16Г7АР, (15Х6СЮ) используют для изготовления деталей, которые работают под умеренной нагрузкой при температурах до 1000 градусов.

Изделия из жаропрочных марок сталей (15Х6СЮ, 08Х13, 14Х17Н2) могут работать под нагрузкой весьма длительный и длительный период при высоких температурах.

К специальным сталям можно отнести стали, из которых катают броневой сэндвич. Отдельное место занимает сталь Гадфильда (1,1% углерода, 13% магния). При работе в условиях высоких давлений происходит самопроизвольная пластическая деформация и соответственно увеличивается степень ее прочности. Уникальные механические свойства пока не до конца изучены.

Магнитные свойства мартенситной стали

У мартенситной структуры кристаллической решетки стали ярко выражены магнитные свойства. Мартенсит – ферромагнетик в чистом виде. Однако выдержать идеальный химический состав сложно. Углеродистые мартенситные стали, легированные молибденом, кобальтом и хромом (ЕХ9К15М2), кобальтом и хромом (ЕХ5К6), хромом (ЕХ3) можно отнести магнитотвердыми материалами.

Легирование кобальтом наиболее эффективно с точки зрения магнетизма – у атомов кобальта присутствует магнитный момент, таким образом, остаточная индукция мартенсита возрастает. Низкая цена и легкость механической и термической обработки дает возможность применения мартенситных сталей в магнитных системах в качестве переключателей для изменения направления при подаче управляющих сигналов.

Свариваемость мартенситных сталей

Технологии сварки мартенситных сплавов усложняются повышенной хрупкостью металла после закалки. Эти типы стали варят после предварительного нагрева примерно от 200 до 450 градусов, температура окружающей среды не должна быть отрицательной. Обычно детали из стали мартенситной группы сваривают методами ручной дуговой сварки электродами, покрытыми специальными составами. Иногда используют и другие виды сварки: аргонодуговые, электрошлаковые, под флюсом.

Мартенситные трансформации в полиморфных кристаллах

Аналогичные мартенситные превращения, когда атомы не меняются местами, а только смещаются друг относительно друга на расстояния, меньшие, чем межатомные (сокращение межатомных связей и изменение углов между ними), наблюдаются не только в сплавах железа, но и в других полиморфных кристаллах.

Такие превращения, их еще называют метаморфозными, имеют место в сталях, чистых металлах: железе, кобальте, титане, литии, как минимум в 35 металлах, в твердых растворах на их основе, в полупроводниках и в полимерах, в интерметаллидах.

В отличие от нормальных равновесных полиморфных превращений мартенситные превращения бездиффузны и метастабильны. Эти превращения носят неравновесный характер. Физика металлов гласит: неравновесные состояния должны быть саморганизованными.

С точки зрения второго закона термодинамики мартенситные трансформации в веществах происходят с убыванием энтропии. Это означает, что кристаллические структуры таких превращений являются результатом самоорганизации, а их параметры приближаются к сверхкритическим.

Структура интерметаллида моноалюминида никеля после мартенситного превращения способна выдерживать температуры до 1300 градусов при высоких нагрузках, но из-за повышенной хрупкости применяется только в качестве жаростойкого покрытия газотурбинных двигателей.

Некоторые интерметаллиды с мартенситными структурами, имеющими в своем составе, платину используют в качестве катализаторов в производстве азота. В связи с ужесточением экологических норм для автомобилей ведутся разработки по дожиганию продуктов сгорания с применением интерметаллидов.

На кристаллах некоторых полупроводников (кремний, германий) можно наблюдать прямые или обратные бездиффузные фазовые переходы состояний. Эксперименты по термообработке кремниевых пластин были реализованы на производстве с 20% экономическим эффектом.

Исследуя процесс обратимости мартенситных трансформаций на перекристаллизации сплава TiNi (интерметаллида), обнаружено изменение размеров образцов.

закалка на мартенсит

Эффект памяти

Дальнейшие эксперименты с различными материалами показали, что многие полиморфные кристаллы могут проявлять такие свойства как эффект памяти формы, сверхупругость и сверхпластичность.

Эффект памяти формы уже сегодня используется в гидравлических муфтах в кораблестроении и авиации, в демпфирующих приспособлениях, в термореле, в медицине для лечения сколиоза, соединения сломанных костей, в хирургии сердца, в стоматологии.

Читайте также: