Как покрываются пиковые нагрузки при отпуске теплоты от тэц

Обновлено: 24.04.2024

Системы регулирования отпуска тепловой энергии

Для систем отопления, вентиляции и кондиционирования воздуха главным фактором, влияющим на расход тепла, является температура наружного воздуха. Расходы тепла на покрытие нагрузок горячего водоснабжения и технологического потребления от температуры наружного воздуха не зависят. Методика изменения отпуска тепла потребителям в соответствии с графиками их теплопотребления называется системой регулирования отпуска тепла.

Различают центральное, групповое и местное регулирование отпуска тепла. Центральное регулирование тепловой нагрузки осуществляется у источника тепла — на ТЭЦ или в районной котельной. Групповое и местное регулирования производятся у потребителей тепла и рассматриваются как дополнительные к центральному.

Групповое регулирование может выполняться в тепловых пунктах промышленных предприятий, в групповых или индивидуальных узлах присоединения местных систем, а местное — у нагревательных приборов систем потребления. По условиям эксплуатации центральное регулирование предпочтительнее группового и местного.

При теплоносителе воде среднюю температуру в нагревательном приборе можно регулировать изменением температуры теплоносителя при входе в нагревательный прибор, выходе из него или одновременным изменением на входе и выходе.

В зависимости от метода воздействия на среднюю температуру теплоносителя известны три системы центрального регулирования отпуска тепла в водяных системах теплоснабжения:

а) качественное — изменением температуры воды в подающем трубопроводе (без регулирования расхода воды);

б) количественное — изменением расхода воды при сохранении постоянной температуры воды в подающем трубопроводе;

в) качественно-количественное — изменением температуры и расходов воды в подающем трубопроводе.

В городских системах централизованного теплоснабжения преимущественно применяется центральное качественное регулирование отпуска тепла, дополняемое на вводах потребителей местным количественным регулированием. В промышленных системах теплоснабжения, характеризующихся большими нагрузками воздушного отопления, возможно частичное применение количественного регулирования тепловой нагрузки. Применение качественно-количественного регулирования отпуска тепла возможно только при одной отопительной нагрузке. Значительного распространения этот метод регулирования не получил.

Качественный метод регулирования. Температурный график для отопительной нагрузки при качественном регулировании строится из предположения постоянного расхода воды в системах отопления в течение всего отопительного сезона. Отпуск тепла регулируется изменением температуры воды в подающей магистрали тепловой сети. Конечной задачей регулирования является поддержание заданной температуры в помещении за счет теплоотдачи нагревательных приборов. Теплоотдача нагревательных приборов должна соответствовать тепловым потерям через ограждающие конструкции зданий, т. е. через стены, окна, перекрытие верхнего этажа и пол первого этажа.

Циркуляция постоянного количества (расхода) воды стабилизирует гидравлический режим сети, так как на всем протяжении отопительного сезона каждый ввод имеет постоянный перепад давлений. Однако следует иметь в виду, что в условиях реальной эксплуатации будет изменяться расход воды в тепловой сети вследствие присоединения и отключения потребителей, а главным образом ввиду колебаний нагрузки горячего водоснабжения из-за переменной температуры сетевой воды, суточных и недельных колебаний в разборе горячей воды.

Температурный график может строиться по отопительной нагрузке, тогда он называется отопительным или нормальным графиком, и по суммарной нагрузке отопления и горячего водоснабжения, тогда он называется в закрытой системе повышенным графиком, а в открытой системе — скорректированным графиком.

Средняя за сутки температура подаваемой воды (с допуском колебаний в пределах отдельных часов) должна строго соответствовать средней за сутки температуре наружного воздуха.

Предварительно средняя температура воздуха берется по прогнозу погоды.

Недостаток центрального качественного регулирования состоит в том, что оно не всегда удовлетворяет условиям отопления всех жилых зданий, так как расчет температурного графика ведется по типовому абоненту и не учитывает солнечной радиации, бытовых тепловыделений и ветра.

Работа водогрейных и комбинированных котлов в пиковом режиме и включение их в тепловую схему ТЭЦ, где подогрев сырой и химически очищенной воды осуществляется в подогревателях за счет отборного пара турбин, водогрейные котлы предназначаются для подогрева сетевой воды сверх той температуры, которую в состоянии обеспечить основные подогреватели. До применения водогрейных котлов покрытие непродолжительных пиковых теплофикационных нагрузок на ТЭЦ осуществлялось за счет включения пиковых пароводяных подогревателей, работающих на редуцированном паре от энергетических котлов. С повышением параметров пара на котлах такое использование пара становилось все более и более нерациональным.

Покрытие пика теплофикационной нагрузки при помощи водогрейных котлов освобождает от необходимости иметь на ТЭЦ соответствующую паровую мощность, т. е. на ТЭЦ может быть установлено меньшее количество паровых котлов высокого давления, что позволяет снизить капитальные затраты и высвободить энергетические котлы высокого давления для установки их на других электростанциях. В настоящее время вся работа водогрейных и комбинированных котлов в пиковом режиме и включение их в тепловую схему ТЭЦ проектируются с установкой пиковых водогрейных котлов, что предусмотрено в действующих нормах технологического проектирования тепловых электростанций. Суммарная мощность пиковых водогрейных котлов обычно равна количеству теплоты в отборном паре (р = 1,2÷2,5 кгс/см 2 ) устанавливаемых турбин и составляет ориентировочно 50% максимальной тепловой нагрузки ТЭЦ.

Коэффициент теплофикации, т. е. отношение количества теплоты, получаемого из отборов турбин, к общему количеству теплоты, потребному для теплофикации:

αтец = Q 2 ) не обеспечивало возможности выбора оптимального состава основного оборудования ТЭЦ. Специализация котлов по виду покрываемой тепловой нагрузки, завышенные параметры пара и малая производительность паровых котлов низкого давления приводили к необходимости принятия ряда вынужденных решений, ведущих к увеличению стоимости источника теплоснабжения, ухудшению его технико - экономических показателей и усложнению условий эксплуатации, связанному с наличием разнотипного оборудования.

К этим вынужденным решениям относятся покрытие пиковых технологических паровых нагрузок от энергетических котлов или из отборов дополнительно устанавливаемой паровой турбины с соответствующим повышением, а ТЭЦ сверх оптимального, установка в чисто отопительных ТЭЦ для покрытия собственных нужд в паре (мазутное хозяйство и т. д.) паровых котлов на низкие или средние параметры пара или турбоагрегатов с двумя отборами пара; установка в отопительных котельных, наряду с водогрейными котлами, котлов типа ДКВР и ГМ для покрытия собственных нужд котельной в паре.

Улучшение положения может быть достигнуто при установке на ТЭЦ и в отопительных котельных комбинированных пароводогрейных котлов. Комбинированные теплофикационные котлы, устанавливаемые на ТЭЦ и в крупных котельных, должны осуществлять покрытие собственных нужд в паре для чисто отопительных ТЭЦ и котельных и покрытие пиков по обоим видам тепловой нагрузки при установке котлов на промышленно-отопительных ТЭЦ. Таким образом, в эксплуатации ТЭЦ возможны два режима использования комбинированных котлов, а именно в период с низкими значениями температуры наружного воздуха (ниже - 10°С при атэц = 0,5), когда для покрытия отопительной нагрузки требуется использование пиковых источников теплоты, и в период, когда вся отопительная нагрузка покрывается от основного энергетического оборудования. При работе в первом режиме покрытие пиков тепловых нагрузок обеспечивается использованием комбинированных котлов и запаса установленной паровой мощности энергетических котлов (сверх пропускной способности турбин).

При колебании суточного графика технологической нагрузки и при снижении ее пика, работа водогрейных и комбинированных котлов в пиковом режиме и включение их в тепловую схему ТЭЦ избыток паровой мощности пароводогрейных котлов используется для подогрева сетевой воды в пиковых бойлерах. Кроме обеспечения независимости работы комбинированных котлов от колебаний технологической нагрузки, создается большая надежность теплоснабжения при выходе из строя энергетического котла.

Работа водогрейных и комбинированных котлов в пиковом режиме и включение их в тепловую схему ТЭЦ во втором режиме характеризуется увеличением запаса паропроизводительности энергетических котлов по сравнению с пропускной способностью турбин при работе их по теплофикационному графику и уменьшением технологической нагрузки. Это практически исключает необходимость использования пароводогрейных котлов в этом режиме. Однако в некоторых случаях, как, например, при прохождении суточных максимумов технологической нагрузки в период ремонта основного оборудования без существенного снижения мощности ТЭЦ, может потребоваться их включение. Учитывая малое время, требуемое на пуск котла, их работу следует предусматривать только в период, необходимый для покрытия пиков, с отключением их на остальное время суток. Поскольку конструкция котлов не обеспечивает чисто парового режима работы, нагрузка котла по водогрейному контуру должна поддерживаться минимально возможной, для уменьшения недовыработки электроэнергии, связанной с вытеснением отопительных отборов турбоустановок. Эти требования справедливы и для первого режима работы при уменьшении доли участия комбинированного котла в покрытии пиковой отопительной нагрузки.

Котельный завод Энергия-СПБ производит различные модели водогрейных котлов. Транспортирование водогрейных котлов и другого котельно-вспомогательного оборудования осуществляется автотранспортом, ж/д полувагонами и речным транспортом. Котельный завод поставляет продукцию во все регионы России и Казахстана.

Классификация тепловых нагрузок

Методы регулирования тепловых нагрузок

Тепловые нагрузки потребителей теплоты как правило не постоянны. Они могут меняться от климатических условий. К нагрузкам, которые зависят от климатических условий относятся отопительная тепловая нагрузка QО = f(tН, 0 С; VН, м/с), вентиляционная тепловая нагрузка QВ = f(tН, 0 С; VН, м/с). Эти нагрузки также по характеру протекания во времени являются сезонными. Также тепловые нагрузки могут изменяться в зависимости от количества включенных водоразборных приборов, степени их открытия и числа людей, которые ими пользуются. К таким нагрузкам относится тепловая нагрузка на ГВС QГВС = f(NПРИБ, qПРИБ, м). QГВС не зависит от климатических условий и по характеру протекания во времени является круглогодичной.

Также тепловые нагрузки могут изменяться от количества работающего технологического оборудования, степени его загрузки и режима его работы. К таким нагрузкам относится технологическая тепловая нагрузка QТ = f(NОБ, qТ, КОДН, КЗАГР). QТ также не зависит от климатических условий и по характеру протекания во времени является круглогодичной.

Для того, чтобы качественно обеспечивать теплоснабжением необходимо, чтобы все потребители тепловой энергии получали именно то количество теплоты, которое им требуется. И поэтому, чтобы постоянное удовлетворять запросы потребителя тепловые нагрузки должны регулироваться.

Регулирование тепловых нагрузок бывает:

– центральное, которое осуществляется на источнике теплоснабжения одновременно для вех потребителей.

– местное, которое осуществляется только для отдельной группы потребителей на центральных или индивидуальных тепловых пунктах.

– индивидуальное, которое осуществляется непосредственно на нагревательных приборах и установках потребителей теплоты.

Регулирование отопительных нагрузок терморегулирующими клапанами на каждый отопительный прибор.

Тепловая энергия, поступающая из системы теплоснабжения, передается потребителям теплоты в различных теплообменных аппаратах (радиаторы, вентиляционные калориферы, подогреватели ГВС). В любом из этих теплообменных аппаратах количество передаваемой теплоты определяется по выражению:

КТА – коэффициент теплопередачи (кДж/м 3 *t 0 С)

КТА – площадь поверхности нагрева (м 3 )

Δt – средняя разность температуры между греющим теплоносителем и нагреваемой средой (температурный напор)

n – время работы теплообменного аппарата

Поверхность нагрева любого теплообменного аппарата рассчитывается и выбирается по самому неблагоприятному для него режиму работы, в котором для передача требуемого количества теплоты требуется максимальная поверхность нагрева. Этот режим работы теплообменного аппарата называется расчетным. Выбранная для расчетного режима работы максимальная поверхность нагрева во всех остальных режимах работы теплообменного аппарата остается постоянной.

Когда изменяется количество теплоты, проходящей через любой обменный аппарат, то это значит, что данный теплообменный аппарат вынужден работать в нерасчетном режиме (переменном).

Для расчетного режима работы теплообменного аппарата должны быть заданы следующие величины:

  1. Расчетная (т.е. максимальная) тепловая нагрузка Q Р
  2. Расчетные температуры греющего теплоносителя и нагреваемой среды на входе/выходе теплообменного аппарата (τ1 Р , τ2 Р ) (t1 Р , t2 Р )
  3. Расчетный коэффициент теплопередачи теплообменного аппарата, КТА.

Принципиальная схема движения теплоносителей для теплообменного аппарата в расчетном режиме

Схема движения теплоносителей

Противоточный теплообменный аппарат. Расчетные расходы теплоносителей определяются после составления теплового баланса теплообменного аппарата:

GГТ Р – расчетный (максимальный) расход греющего теплоносителя

GНС Р – расход нагреваемой среды

СГТ, СНС – массовые теплоемкости

nТА – КПД теплообменного аппарата.

Изменение режима работы теплообменного аппарата можно осуществлять воздействуя на:

– коэффициент теплообменного аппарата, КТА

– среднюю разность температуры Δt

– время работы аппарата (n, час)

– расход греющего теплоносителя.

В реальности изменять в широких пределах коэффициент теплопередачи теплообменного аппарата сложно, и остается только 3 способа воздействия на количество теплоты передаваемое потребителю.

  1. Метод качественного регулирования тепловой нагрузки

При этом методе регулирования изменяется температура греющего теплоносителя, подающегося в трубопровод тепловой сети, а расход греющего теплоносителя всегда остается постоянным, т.е. τ1 Р не равно τ1 = var, GГТ Р = GГТ = const.

При изменении температуры греющего теплоносителя меняется, и температура сетевой воды в обратном трубопроводе тепловой сети. Соответственно, по выражению (2)

меняется и тепловая нагрузка, передаваемая теплообменных аппаратом. Следовательно, Q Р не равно Q = var.

График изменения температуры и расхода греющего теплоносителя при качественном методе регулирования тепловой нагрузки

(график зависимости температуры и расхода от температуры наружного воздуха)

График зависимости температуры и расхода от температуры наружного воздуха

tН.РО. = tН.РВ. = tН.Х. Б – температуры наружного воздуха, расчетные для проектирования систем отопления и вентиляции зданий (принимаем по параметрам ”Б”).

tН.О. – температура наружного воздуха соответствующая началу и окончанию отопительного периода.

tН = tВ Р – температура воздуха внутри помещения.

Интервал температуры от tН.РО. до tН.О. – соответствует отопительному периоду, tН.О. до tН – летний период.

Метод качественного регулирования тепловых нагрузок получил широкое распространение при централизованном теплоснабжении и от водяных систем, т.к. снижение τ1 и τ2 позволяют уменьшать давление пара теплофикационных отборов турбин и увеличивать выработку электроэнергии на ТЭЦ по теплофикационному циклу. Увеличение выработки электроэнергии на ТЭЦ приводит к возрастанию экономии топлива. Следующим преимуществом метода качественного регулирования является уменьшение готовых потерь теплоты от тепловых сетей в окружающую среду.

  1. Метод количественного регулирования тепловой нагрузки

При этом методе изменяется расход греющего теплоносителя, а температура греющего теплоносителя в подающем трубопроводе тепловой сети остается постоянной: GГТ Р не равно GГТ = var; τ1 Р =τ1=const. Изменение расхода греющего теплоносителя приводит к изменению температуры в обратном трубопроводе тепловой сети и соответственно по выражению (2)

измененная тепловая нагрузка, переданная теплообменному аппарату.

Графики изменения температуры и расхода греющего теплоносителя при количественном методе регулирования тепловой нагрузки

График изменения t и Q при количественном регулировании

Достоинством количественного метода является сокращение потребляемой электроэнергии на перекачку сетевой воды. Экономия электроэнергии достигается либо отключением части работающих сетевых насосов котельной или ТЭЦ, либо установкой на работающих насосах частотно-регулирующего привода.

Недостатком метода является резкое колебание расхода сетевой воды во всей системе теплоснабжения. Это обстоятельство приводит к разрегулированию системы отопления и вентиляции здания и нестабильной работе отопительных приборов и вентиляции калориферов.

  1. Метод регулирования тепловой нагрузки ”местными пропусками”

При этом методе все теплообменные аппараты систем теплоснабжения зданий работают в расчетном режиме, т.е. остается постоянный расход греющего теплоносителя, а также температуры греющего теплоносителя в подающем и обратном трубопроводах тепловой сети и, следовательно, по выражению (2), количество теплоты, переданное теплообменному аппарату также должно оставаться постоянным. Но при этом способе регулирования изменяется продолжительность работы теплообменного аппарата в течении суток, т.е. n=var и, следовательно, изменяется количество теплоты, переданное теплообменному аппарату. Q Р не равно Q = var.

Количество теплоты, переданное от теплообменного аппарата в течение суток определяется по выражению:

Концепция рационального снижения температуры обратной сетевой воды тепломагистралей ТЭЦ и водогрейных котельных

Конкурентоспособность ТЭЦ и котельных энергоснабжающих организаций России на рынке производства и передачи тепловой и электрической энергии в значительной степени зависит от температуры обратной сетевой воды, возвращаемой Потребителями.

Согласно Правилам технической эксплуатации тепловых энергоустановок и Правилам технической эксплуатации электрических станций и сетей РФ температура сетевой воды в подающих тепломагистралях по температурному графику задается по усредненной температуре наружного воздуха за промежуток времени в пределах 12 – 24 ч, определяемый диспетчером тепловой сети в зависимости от длины сетей, климатических условий и других факторов. При этом, допустимое отклонение температуры сетевой в подающих тепломагистралях может составлять ± 3% от заданного режима.

Температура обратной сетевой воды является для энергоснабжающих организаций неуправляемым параметром и регламентируется режимом работы всей системы теплоснабжения (источник теплоты + тепловые сети + Потребитель).

Потребитель – это индивидуальный тепловой пункт с узлом учета тепловой энергии, система отопления, система теплоснабжения калориферов вентиляции и тепловых завес, система горячего водоснабжения и система теплоснабжения технологических процессов

На температуру обратной сетевой воды в большей мере оказывает влияние Потребитель.

В настоящее время правовые взаимоотношения между энергоснабжающей организацией и Абонентом в части соблюдения режимов теплопотребления и поддержания температуры обратной сетевой воды регламентируются следующими документами:

В соответствии с п.9.2.1 ПТЭ-2003 среднесуточная температура обратной сетевой воды не должна превышать заданную температурным графиком температуру более чем на 5%, а согласно п.4.11.1 Правил технической эксплуатации электрических станций и сетей РФ – более чем на 3%.

Согласно вышеуказанным нормативным документам понижение температуры сетевой воды в обратных тепломагистралях ТЭЦ и котельных по сравнению с графиком не лимитируется.

В типовых договорах большинства энергоснабжающих организаций регламентируется, что фактическая среднесуточная температура обратной сетевой воды не должна превышать заданную температурным графиком температуру более чем на 3°С. В противном случае, при наличии у Абонента узла учета тепловой энергии (теплосчетчика) расчет отпущенной тепловой энергии осуществляется энергоснабжающей организацией по температурному перепаду, предусмотренному графиком при фактических величинах среднесуточной температуры прямой сетевой воды и среднесуточному расходу сетевой воды.

Степень и характер влияния значения температуры обратной сетевой воды на энергоэффективность выработки тепла и электроэнергии ТЭЦ и отпуска тепла водогрейными котельными значительно отличаются.

Температура обратной сетевой воды отражает степень гидравлической и тепловой разрегулировки индивидуального теплового пункта и систем теплопотребления у Абонента (Потребителя), величину гидравлической разрегулировки тепловой сети, а также эффективность работы тепловой сети при транспортировке, распределении и использовании тепловой энергии, которая в настоящее время оценивается энергетическими характеристиками по следующим показателям (см.Методические указания. СО 153-34.20.523-2003 (ч.1,2,3,4)):

Отпуск тепла с ТЭЦ обеспечивается за счет отборов теплофикационных турбин c подогревом сетевой воды в основных сетевых подогревателях (нижний и верхний).

В режимах работы теплофикационной турбины по тепловому графику отпуск тепла и выработка электроэнергии в значительной степени зависит от уровня температуры обратной сетевой воды.

Эффективность работы ТЭЦ повышается при понижении температуры обратной сетевой воды по сравнению с величиной, заданной температурным графиком.

В настоящее время значительная часть ТЭЦ России осуществляет переход от качественного регулирования отпуска тепла и поддержания температурного графика на качественно-количественное регулирование отпуска тепловой энергии.

При качественно-количественном регулировании осуществляется изменение расхода (ступенчатое или плавное) и температуры сетевой воды в зависимости от величины отопительной нагрузки.

В холодный период система теплоснабжения обеспечивает работу с расчетным расходом воды, а при повышении температуры наружного воздуха расход воды снижается.

При нормативном и сверхнормативном понижении температуры обратной сетевой воды дополнительно снижаются технологические потери при передаче тепловой энергии от ТЭЦ, а именно: потери тепловой энергии в тепловых сетях теплопередачей через теплоизоляционные конструкции теплопроводов.

Кроме того, при снижении температуры обратной сетевой воды в открытых системах теплоснабжения, например, с 60°С (максимум величины скорости коррозии) до 40°С скорость внутренней кислородной коррозии труб снижается практически 2 раза, что увеличивает срок службы тепловых сетей. Т.о. нормативное и сверхнормативное понижении температуры обратной сетевой воды в тепломагистралях ТЭЦ приводит не только к повышению эффективности работы самой ТЭЦ, но и к повышению эффективности работы тепловой сети, т.к. все эксплуатационные энергетические характеристики (удельный расход электроэнергии, удельный расход сетевой воды, тепловые потери, потери сетевой воды) значительно понижаются,

Несколько иной характер влияния носит температура обратной сетевой воды на эффективность работы водогрейных котельных и их тепломагистралей.

Большинство водогрейных котельных в настоящее время также осуществляют переход на качественно-количественное регулирование отпуска тепла.

Для уменьшения интенсивности наружной низкотемпературной кислородной и сернокислотной коррозии труб поверхностей стальных водогрейных котлов необходимо поддерживать температуру воды на входе в котлы выше температуры точки росы дымовых газов.

Минимально допустимая рекомендуемая температура воды на входе в котлы составляет: при работе на природном газе – не ниже 60 °С, при работе на малосернистом мазуте – не ниже 70 °С, а при работе на высокосернистом мазуте не ниже 110°С.

В связи с тем, что в течении отопительного периода температура обратной сетевой воды изменяется в диапазоне от +55°С (для температур наружного воздуха ниже минус 11°С) до + 35°С (окончание отопительного сезоне при температурах наружного воздуха плюс 8°С), что ниже минимально допустимой температуры (60-70)°С , в теплотехнических схемах водогрейных котельных предусматривается установка рециркуляционных насосов между подающей и обратной магистралями для поддержания требуемых температур на входе в котлы.

Таким образом, повышенная температура обратной сетевой воды, возвращаемой в водогрейную котельную, приводит к снижению потребления топлива котлами и электроэнергии двигателями рециркуляционных насосов, к увеличению потерь тепловой энергии в тепловых сетях теплопередачей через теплоизоляционные конструкции теплопроводов, к увеличению скорости внутренней кислородной коррозии трубопроводов и в целом снижает эффективность работы тепловой сети по всем фактическим энергетическим показателям и повышает удельные финансовые затраты (руб./Гкал) на выработку тепловой энергии.

Нормативное снижение температуры обратной сетевой водогрейных котельных приводит к повышению потребления топлива котлами, к увеличению потребления электроэнергии двигателями рециркуляционных насосов, к снижению потерь тепловой энергии в тепловых сетях теплопередачей через теплоизоляционные конструкции теплопроводов, уменьшению скорости внутренней кислородной коррозии трубопроводов и в целом повышает эффективность работы тепловой сети по всем фактическим энергетическим показателям и снижает удельные финансовые затраты на выработку тепловой энергии.

Свехнормативное снижение температуры обратной сетевой воды для тепломагистралей водогрейных котельных может привести к росту удельного расхода электроэнергии на единицу вырабатываемой тепловой мощности из-за увеличения потребления электроэнергии двигателями рециркуляционных насосов. Целесообразность сверхнормативного снижения температуры обратной сетевой воды для водогрейных котельных требует дополнительного технико-экономического анализа.

При каскадной (последовательной) установки тепловых насосов по контуру низкопотенциального тепла температура обратной сетевой воды может быть снижена до плюс 5°С. Тепловые насосы подключаются к обратному трубопроводу сетевой воды через теплообменник.

Читайте также: