К чему приводит работа насоса в кавитационном режиме

Обновлено: 18.04.2024

Термин "Кавитация" происходит от латинского - Cavitas (впадина, углубление, полость).
Данным термином принято обозначать физический процесс, протекающий при ряде условий в жидкостях, и сопровождающийся образованием и схлопыванием большого количества пузырьков (пустот, каверн).

Кавитацию можно условно разделить на два подтипа согласно происхождению: гидродинамическая и акустическая.
В свою очередь, гидродинамическая Кавитация имеет ещё два подкласса - назовем их статический и динамический.

Так, в 1 л воды при температуре 20°С растворяется приблизительно 665 мл углекислого газа, а при 0°С — в три раза
больше, 1995 мл. При температуре 0°С в одном литре H2O может быть растворено: He — 10 мл, H2S — 4630 мл.

Повышение давления влечёт за собой увеличение растворимости газов.

Например, при давлении 25атм в 1 л воды растворяется углекислого газа 16,3 л, а при 53 атм — 26,9.Понижение давления даёт, соответственно, обратный эффект. Если оставить ёмкость с водой на ночь, на стенках образуются пузырьки газа. Ещё более наглядно и быстрее это можно увидеть в стакане с газировкой. В процессе кипячения воды мы также видим процесс образования пузырьков с газом и паром.

Кавитация (тепловая) в некотором смысле - тот же процесс кипения, вызванный не только повышением температуры
(хотя и это тоже один из факторов образования кавитации).В сочетании двух факторов, повышенной температуры и пониженного давления над жидкостью, происходит процесс кавитации, при котором жидкость переходит в газо-водяную смесь.

Видеодемонстрация описанного эффекта.


Это особо критично и чаще всего встречается в насосных системах, работающих на всасывание. Рабочее колесо или винт создают во всасывающей магистрали разряжение, которое в случае недостатка жидкости на входе (заужение прохода, излишнее количество поворотов трубопровода и т.д.), создают условия для кавитационного закипания жидкости.

Очень часто клиенты обращаются с вопросом - почему нельзя всасывать жидкости с высокой температурой? Ответ лежит на поверхности – при понижении давления во всасывающем патрубке большая часть воды переходит в следующее агрегатное состояние, т. н. водно-газовую смесь (проще говоря, кавитационный кипяток), поднять который обычным насосом для воды уже нельзя в принципе.
Раствор жидкости с газом находится в обычных условиях в равновесии, т.е. давление в жидкости больше давления насыщенных паров газа, и система стабильна. В тех случаях, когда в системе нарушается данное равновесие, и происходит образование кавитационных пузырьков.
Рассмотрим случай образования Кавитации в статичной системе.

Чаще всего кавитация образуется в зоне, расположенной на напорной магистрали насоса, в случае её сужения.
Т.е. давление жидкости после сужения падает (согласно закону Бернулли), т.к. увеличиваются потери и кинетическая энергия.
Давление насыщенных паров становится больше внутреннего давления в жидкости с образованием пузырьков/каверн. После прохождения узкой части (это может быть приоткрытый затвор, местное сужение, и т. п.) скорость потока падает, давление возрастает и пузырьки газов и паров схлопываются. Причём энергия, высвобождаемая при этом, весьма и весьма велика, в результате чего (особенно если это происходит в пузырьках, находящихся на стенках) происходят микро-гидроудары, влекущие за собой повреждения стенок. При этом, если не принять мер, то процесс дойдёт и до полного разрушения стенок насосной части. Вибрация и повышенный шум в насосе и трубах - первейшие признаки кавитации.

Основные слабые места в гидросистемах - места сужения, резкого изменения скорости потока жидкости (клапаны, краны, задвижки) и рабочие колёса насосов. Более уязвимыми они становятся при увеличении шероховатости поверхности.





Но кавитация имеет помимо негативных последствий ещё и позитивные.
Её воздействие может полировать детали, очищать трубы.
Всё же чаще всего есть необходимость избежать кавитационных явлений.
Способ первый, основной, но не единственный – учёт кавитационного запаса насоса на стадии проектирования системы.

Учёт кавитационного запаса насоса на стадии проектирования системы.

Для расчёта достаточного кавитационного запаса системы надо посчитать
H – максимально возможную для данных условий, для данного насоса и его производительности, высоту всасывания.
H= Pb*10.2 – NPSH – Hf – Hv – Hs,где
Hf - потери во всасывающей магистрали (м.в.ст.) в метрах водяного столба,
Hv - давление насыщенных паров жидкости при рабочей температуре (м),
Hs - запас надёжности, принимаемый проектировщиками – 0,5 м.в.ст.,
Pb - давление над жидкостью - в открытой системе это атмосферное давление, приблизительно равное 10,2 м.в.ст. (Pb*10.2)
Характеристика насоса NPSH (Net Positive Suction Head) означает высоту всасывания, измеренную на всасывающем входе в насос, с поправкой на давление насыщенных паров конкретной перекачиваемой жидкости,на максимальной производительности насоса.

Т.е. физический смысл формулы H= Pb*10.2 – NPSH – Hf – Hv – Hs состоит в том, чтобы на максимальных рабочих параметрах насоса разряжение в его всасывающем патрубке не превышало бы давление насыщенных паров жидкости при рабочей температуре, т.е. система имела бы требуемый для бескавитационной работы подпор.

Совершенно очевидны отсюда и остальные пути снижения вероятности появления кавитации:
- изменить диаметр на всасывании на больший – уменьшить потери (Hf),
- переместить насос ближе к месту забора жидкости – уменьшить потери (Hf),
- поставить более гладкую трубу, уменьшить число поворотов, задвижек, клапанов– уменьшить потери (Hf),
- понизить разряжение на всасывании изменением высоты установки насоса или использованием бустерного насосного оборудования – повысить (Pb),
- снизить температуру жидкости - уменьшить (Hv),
- уменьшить производительность насоса, снизить число оборотов – понизить (NPSH).
Все эти меры направлены на уменьшение возможности возникновения кавитации в насосе и ведут к долговременной и безопасной работе насосов.

Кавитация это явление появления в перекачиваемой жидкости зон разряжения. Наглядно это выглядит в виде появления в воде (жидкости) пузырьков газа.

Кавитация и ее влияние на насосы.

Данное явление оказывает негативное влияние на насосные агрегаты, так как при росте давления пузыри схлопываются. И если это происходит внутри рабочей полости насоса, это приводит к тому, что выделенная при схлопывании энергия разрушает улитки и поверхности рабочего колеса.

Кроме этого в результате схлопывания появляется вибрация, которая негативно влияет на всю насосную установку в целом. Для насосов кавитация является одной из главных проблем.

Кавитация уменьшает КПД, напор и производительность насоса. При сильном развитии кавитации центробежный консольный насос полностью прекращает работу (срывает подачу). Длительная работа насоса при наличии даже незначительных кавитационных явлений совершенно недопустима. Особенно сильно при кавитации повреждаются детали насосов, если перекачивается вода, содержит твердые включения.

От действия кавитации поверхности деталей становятся шероховатыми и губчатыми, что способствует быстрому истиранию деталей содержащимися в жидкости включениями. В свою очередь твердые частицы, истирая поверхности деталей, содействуют усилению кавитации.
Особенно сильно кавитационному разрушению подвержены чугун и углеродистая сталь. Наиболее устойчивы в этом отношении насосы из нержавеющей стали и бронзы.

Способы борьбы с кавитацией.

Для уменьшения явления кавитации существует несколько способов.

1. Во-первых, каждый насосов имеет некоторый кавитационный запас ∆hтр. Нельзя превышать это значение (имеется в виду давление жидкости внутри системы), и жидкость будет оставаться жидкостью. Все характеристики по данному параметру обязан предоставлять завод производитель.

2. Во-вторых, для предупреждения появления кавитации и своевременной настройки работы насоса необходимо на всасывающих патрубках устанавливать датчики давления. И в случае падения на нем давления сразу принимать меры перевода насоса в другой режим работы. Однако данный метод применяется нечасто.

3. Если кавитация появляется часто следует заменить диаметр всасывающий патрубок на больший.

4. Можно перенести насос чуть ближе к резервуару с жидкостью (но на расстояние не меньшее 10 диаметров всасывающей трубы).

5. Можно заменить всасывающую трубу на другую, изготовленную из менее шероховатых материалов или удалить обратный клапан.

6. Если всасывающая труба имеет много изгибов и поворотов, то следует максимально уменьшить их количество. Если это невозможно сделать тогда все изгибы и повороты сделать большего радиуса.

7. Так же можно минимизировать явление кавитации, повысив давление во всасывающем патрубке. Для этого необходимо в заборном резервуаре увеличить уровень воды, или использовать бустерный насос.

Классификация летательных аппаратов применяемых в системе МЧС.

Беспилотный летательный аппарат (БПЛА или БЛА) — в общем случае это летательный аппарат без экипажа на борту. А именно: летательный аппарат без экипажа на борту, использующий аэродинамический принцип создания подъемной силы с помощью фиксированного или вращающегося крыла (БПЛА самолетного и вертолетного типа), оснащенный двигателем и имеющий полезную нагрузку и продолжительность полета, достаточные для выполнения специальных задач

Беспилотная авиация может найти широкое применение для решения специальных задач, когда использование пилотируемой авиации невозможно или экономически невыгодно:

осмотр труднодоступных участков границы,

наблюдение за различными участками суши и водной поверхности,

определение последствий стихийных бедствий и катастроф,

выявление очагов лесных пожаров, выполнение поисковых и других работ.

Классификация БПЛА по принципу полета

По этому критерию все БПЛА можно разделить на 5 групп (первые 4 группы относятся к аппаратам аэродинамического типа):

1) БПЛА с жестким крылом (БПЛА самолетного типа);

2) БПЛА с гибким крылом;

3) БПЛА с вращающимся крылом (БПЛА вертолетного типа);

4) БПЛА с машущим крылом;

5) БПЛА аэростатического типа.

Кроме БПЛА перечисленных пяти групп существуют также различные гибридные подклассы аппаратов, которые по их принципу полета трудно однозначно отнести к какой-либо из перечисленных групп. Особенно много таких БПЛА, которые совмещают качества аппаратов самолетного и вертолетного типов.

Кроме БПЛА перечисленных пяти групп существуют также различные гибридные подклассы аппаратов, которые по их принципу полета трудно однозначно отнести к какой-либо из перечисленных групп. Особенно много таких БПЛА, которые совмещают качества аппаратов самолетного и вертолетного типов.

С жестким крылом (самолетного типа)

Этот тип аппаратов известен также как БПЛА с жестким крылом. Подъемная сила данных аппаратов создается аэродинамическим способом за счет напора воздуха, набегающего на неподвижное крыло. Аппараты такого типа, как правило, отличаются большой длительностью полета, большой максимальной высотой полета и высокой скоростью.

С гибким крылом

Это дешевые и экономичные летательные аппараты аэродинамического типа, в которых в качестве несущего крыла используется не жесткая, а гибкая (мягкая) конструкция, выполненная из ткани, эластичного полимерного материала или упругого композитного материала, обладающего свойством обратимой деформации. В этом классе БПЛА можно выделить беспилотные моторизованные парапланы, дельтапланы и БПЛА с упруго деформируемым крылом.

Беспилотный моторизованный параплан – аппарат на основе управляемого парашюта-крыла, снабжённый мототележкой с воздушным винтом для автономного разбега и самостоятельного полёта. Крыло обычно имеет форму прямоугольника или эллипса. Крыло может быть мягким, иметь жесткий или надувной каркас. Недостатком беспилотных моторизованных парапланов является трудность управления ими, так как навигационные датчики не имеют жесткой связи с крылом. Ограничение на их применение оказывает также очевидная зависимость от погодных условий.

С вращающимся крылом (вертолетного типа)

Этот тип аппаратов известен также как БПЛА с вращающимся крылом. Часто их называют также – БПЛА с вертикальным взлетом и посадкой. Последнее не совсем корректно, так как в общем случае вертикальный взлет и посадку могут иметь и БПЛА с неподвижным.

Подъемная сила у аппаратов этого типа также создается аэродинамически, но не за счет крыльев, а за счет вращающихся лопастей несущего винта (винтов). Крылья либо отсутствуют вовсе, либо играют вспомогательную роль. Очевидными преимуществами БПЛА вертолетного типа являются способность зависания в точке и высокая маневренность, поэтому их часто используют в качестве воздушных роботов.

С машущим крылом

БПЛА с машущим крылом основаны на бионическом принципе – копировании движений, создаваемых в полете летающими живыми объектами – птицами и насекомыми. Хотя в этом классе БПЛА пока нет серийно выпускаемых аппаратов и практического применения они пока не имеют, во всем мире проводятся интенсивные исследования в этой области. В последние годы появилось большое количество разных интересных концептов малых БПЛА с машущим крылом.

Аппараты, основанные на имитации движений птиц, получили название орнитоптеров, а аппараты, в которых копируются движения летающих насекомых – энтомоптерами.

БПЛА аэростатического типа – это особый класс БПЛА, в котором подъемная сила создается преимущественно за счет архимедовой силы, действующей на баллон, заполненный легким газом (как правило, гелием). Этот класс представлен, в основном, беспилотными дирижаблями

Дирижабль – Л А легче воздуха, представляющий собой комбинацию аэростата с движителем (обычно это винт (пропеллер, импеллер) с электрическим двигателем или ДВС) и системы управления ориентацией. По конструкции дирижабли подразделяются на три основных типа: мягкий, полужёсткий и жёсткий. В дирижаблях мягкого и полужёсткого типа оболочка для несущего газа мягкая, которая приобретает требуемую форму только после закачки в неё несущего газа под определённым давлением.

Некоторые классы зарубежной классификации отсутствуют в РФ, лёгкие БПЛА в России имеют значительно большую дальность и т. д. Согласно российской классификации, которая ориентирована преимущественно пока только на военное назначение аппаратов.

БПЛА можно систематизировать следующим образом:

Микро– и мини–БПЛА ближнего радиуса действия – взлётная масса до 5 кг, дальность действия до 25-40 км;

Лёгкие БПЛА малого радиуса действия – взлётная масса 5-50 кг, дальность действия 10-70 км;

Лёгкие БПЛА среднего радиуса действия – взлётная масса 50-100 кг, дальность действия 70-150 (250) км;

Средние БПЛА – взлётная масса 100-300 кг, дальность действия 150-1000 км;

Средне-тяжёлые БПЛА – взлётная масса 300-500 кг, дальность действия 70-300 км;

Тяжёлые БПЛА среднего радиуса действия – взлётная масса более 500 кг, дальность действия 70-300 км;

Тяжёлые БПЛА большой продолжительности полёта – взлётная масса более 1500 кг, дальность действия около 1500 км;

Беспилотные боевые самолёты – взлётная масса более 500 кг, дальностью около 1500 км.

Комплекс воздушной разведки Гранад ВА-1000"

Рис. 6. Насос типа WKTA германской компании KSB

Проблема конструирования горячего насоса высокого давления заключается в решении следующих основных задач:

  • обеспечение полной герметичности вала и разъемов корпусных деталей;
  • обеспечение необходимой прочности и жесткости применяемых конструкционных материалов в условиях высоких температур и давлений, а также их коррозионной и эрозионной стойкости, так как тяжелые остатки богаты сернистыми соединениями и мелкодисперсными абразивными примесями;
  • обеспечение температурных расширений роторных и статорных деталей без расцентровки и заедания ротора в корпусе насоса;
  • обеспечение высокой ремонтопригодности, так как для демонтажа, ремонта и последующего монтажа насоса в установке отводится от двух до четырех суток [2];
  • обеспечение требуемой нормативными документами наработки на отказ и двух-, трехлетнего межремонтного пробега [3].

Обеспечение последнего требования трудно выполнимо, так как насосы, отбирающие тяжелые остатки с низа колонны, работают в предкавитационном или уже в кавитационном режимах. Причиной этому является следующее: эти кипящие остатки находятся под давлением собственных паров, т.е. в состоянии равновесия с давлением паров, поэтому на входе в насос будет только геодезический подпор жидкости в колонне. С учетом возможных потерь во входном трубопроводе и для исключения возможного газообразования в насосе при этих условиях значение геодезического подпора рекомендуется держать в пределах 2,0…2,5 м [2]. Другими словами, эти значения являются кавитационным запасом системы для насоса. Такие значения кавитационного запаса при подачах более 300 м3/ч трудно обеспечить центробежными насосами без специальных мероприятий, и кавитационные явления в какой-то мере всегда присутствуют.

Фундаментальные научные исследования кавитационных явлений в гидромашинах (насосах и гидротурбинах) активно проводились в 50–70-х гг. ХХ века во многих специализированных предприятиях и НИИ бывшего СССР, а также за рубежом. Особое внимание в этих работах уделялось топливным насосам для авиации и космоса, где вопросы кавитации были очень злободневными [4–6].

Было установлено, что характер кавитации зависит от многих факторов, которые зачастую трудно установить.

Существует несколько концепций зарождения и развития кавитации, например, гидродинамическая, термодинамическая, ядерная. И каждая из них как-то обосновывалась и выражалась соответствующими критериями. К концу ХХ века сформировалось общее утверждение, что кавитация является гидродинамическим явлением и зависит как от гидродинамических качеств гидромашины, так и от физических свойств жидкости. Кавитация начинается при падении давления до значения, равного или меньшего упругости пара. Она сопровождается нарушением сплошности потока и образованием пузырьков-каверн, наполненных паром. При попадании каверны в зону повышенного давления пар конденсируется в капельки жидкости, причем конденсация происходит мгновенно. При подобном устремлении массы жидкости с огромным ускорением в смыкающиеся пустоты возникают удары, происходит местное повышение давления в этих точках, достигающее 30 МПа.

Эти удары повторяются десятки тысяч раз в секунду.

В насосе явление кавитации сопровождается шумом, повышенной вибрацией, следствием которой является преждевременный выход из строя торцовых уплотнений и подшипников. Также возможно снижение подачи, напора, мощности и КПД. При длительной работе в кавитационном режиме возможно разрушение поверхностей лопастей рабочего колеса, входного трубопровода, а иногда и стенок отвода.

В результате многих экспериментальных исследований появились объяснения многих кавитационных явлений и процессов, выработаны некоторые рекомендации для практических расчетов и эксплуатации гидромашин.


где n – частота вращения, об/мин; Qр – расчетная подача рабочего колеса, м3/ч; Δhкр – критический (3%ный срывной) кавитационный запас рабочего колеса по ГОСТ 6134–2009, м (соответствует NPSHr по ISO 13709:2003/API 610).

Также определились пути и методы устранение вредного воздействия кавитации в центробежных насосах. Они могут быть мероприятиями как относящимися к системе, в которой работает насос, так и конструкторскими решениями в самом насосе. К первым можно отнести увеличение геодезического подпора в колонне и уменьшение гидравлических потерь во входном трубопроводе. Известными конструкторскими решениями являются следующие:

  • уменьшение частоты вращения;
  • уменьшение расчетной подачи за счет применения рабочего колеса двухстороннего входа;
  • специальное проектирование рабочего колеса и профилирование лопасти;
  • установка предвлюченного колеса (шнека) перед рабочим колесом;
  • в многоступенчатых насосах применение рабочего колеса первой ступени двухстороннего входа.

Снижение частоты вращения является очень эффективным способом уменьшения воздействия кавитации, но этот способ не всегда оправдан, так как для достижения заданного напора необходимо увеличивать как число ступеней, так и диаметр рабочих колес. Такое решение ведет к существенному ухудшению массогабаритных характеристик насоса, поэтому в каждом конкретном случае требуется оптимизация вариантов.

Более оптимальным решением в высоконапорных многоступенчатых насосах является применение в качестве первой ступени рабочего колеса двухстороннего входа.

Рис. 1. Насос НТ 560/335-300

Рис. 1. Насос НТ 560/335-300

Следует отметить, что такая конструктивная схема проточной части довольно часто встречается в насосах ведущих компаний мира (рис. 4–6).

Рис. 4. Насос типа HPDM швейцарской компании SULZER Рис. 5. Крупный питательный насос типа MBFP компании FLOWSERVE Рис. 6. Насос типа WKTA германской компании KSB

Рис. 7. Конденсатный насос КсВ 200-130

Рис. 7. Конденсатный насос КсВ 200-130

Рис. 8. Насос НДМг 360-350

Рис. 8. Насос НДМг 360-350

Обобщая приведенную информацию, для условий работы высоконапорных печных насосов с подачами 300…600 м3/ч можно дать следующие рекомендации:

  • конструкция насоса должна соответствовать типам ВВ2 или ВВ5 по API 610;
  • при применении в конструкции насоса однопоточной схемы проточной части со шнекоцентробежной первой ступенью должно быть оговорено ограничение рабочего диапазона по подаче: 0,7…1,1Qопт (здесь Qопт – режим максимального КПД).

Более перспективной считается конструкция многоступенчатого насоса с рабочим колесом первой ступени двухстороннего входа.

Термин "Кавитация" происходит от латинского - Cavitas (впадина, углубление, полость).
Данным термином принято обозначать физический процесс, протекающий при ряде условий в жидкостях, и сопровождающийся образованием и схлопыванием большого количества пузырьков (пустот, каверн).

Кавитацию можно условно разделить на два подтипа согласно происхождению: гидродинамическая и акустическая.
В свою очередь, гидродинамическая Кавитация имеет ещё два подкласса - назовем их статический и динамический.

Так, в 1 л воды при температуре 20°С растворяется приблизительно 665 мл углекислого газа, а при 0°С — в три раза
больше, 1995 мл. При температуре 0°С в одном литре H2O может быть растворено: He — 10 мл, H2S — 4630 мл.

Повышение давления влечёт за собой увеличение растворимости газов.

Например, при давлении 25атм в 1 л воды растворяется углекислого газа 16,3 л, а при 53 атм — 26,9.Понижение давления даёт, соответственно, обратный эффект. Если оставить ёмкость с водой на ночь, на стенках образуются пузырьки газа. Ещё более наглядно и быстрее это можно увидеть в стакане с газировкой. В процессе кипячения воды мы также видим процесс образования пузырьков с газом и паром.

Кавитация (тепловая) в некотором смысле - тот же процесс кипения, вызванный не только повышением температуры
(хотя и это тоже один из факторов образования кавитации).В сочетании двух факторов, повышенной температуры и пониженного давления над жидкостью, происходит процесс кавитации, при котором жидкость переходит в газо-водяную смесь.

Видеодемонстрация описанного эффекта.


Это особо критично и чаще всего встречается в насосных системах, работающих на всасывание. Рабочее колесо или винт создают во всасывающей магистрали разряжение, которое в случае недостатка жидкости на входе (заужение прохода, излишнее количество поворотов трубопровода и т.д.), создают условия для кавитационного закипания жидкости.

Очень часто клиенты обращаются с вопросом - почему нельзя всасывать жидкости с высокой температурой? Ответ лежит на поверхности – при понижении давления во всасывающем патрубке большая часть воды переходит в следующее агрегатное состояние, т. н. водно-газовую смесь (проще говоря, кавитационный кипяток), поднять который обычным насосом для воды уже нельзя в принципе.
Раствор жидкости с газом находится в обычных условиях в равновесии, т.е. давление в жидкости больше давления насыщенных паров газа, и система стабильна. В тех случаях, когда в системе нарушается данное равновесие, и происходит образование кавитационных пузырьков.
Рассмотрим случай образования Кавитации в статичной системе.

Чаще всего кавитация образуется в зоне, расположенной на напорной магистрали насоса, в случае её сужения.
Т.е. давление жидкости после сужения падает (согласно закону Бернулли), т.к. увеличиваются потери и кинетическая энергия.
Давление насыщенных паров становится больше внутреннего давления в жидкости с образованием пузырьков/каверн. После прохождения узкой части (это может быть приоткрытый затвор, местное сужение, и т. п.) скорость потока падает, давление возрастает и пузырьки газов и паров схлопываются. Причём энергия, высвобождаемая при этом, весьма и весьма велика, в результате чего (особенно если это происходит в пузырьках, находящихся на стенках) происходят микро-гидроудары, влекущие за собой повреждения стенок. При этом, если не принять мер, то процесс дойдёт и до полного разрушения стенок насосной части. Вибрация и повышенный шум в насосе и трубах - первейшие признаки кавитации.

Основные слабые места в гидросистемах - места сужения, резкого изменения скорости потока жидкости (клапаны, краны, задвижки) и рабочие колёса насосов. Более уязвимыми они становятся при увеличении шероховатости поверхности.





Но кавитация имеет помимо негативных последствий ещё и позитивные.
Её воздействие может полировать детали, очищать трубы.
Всё же чаще всего есть необходимость избежать кавитационных явлений.
Способ первый, основной, но не единственный – учёт кавитационного запаса насоса на стадии проектирования системы.

Учёт кавитационного запаса насоса на стадии проектирования системы.

Для расчёта достаточного кавитационного запаса системы надо посчитать
H – максимально возможную для данных условий, для данного насоса и его производительности, высоту всасывания.
H= Pb*10.2 – NPSH – Hf – Hv – Hs,где
Hf - потери во всасывающей магистрали (м.в.ст.) в метрах водяного столба,
Hv - давление насыщенных паров жидкости при рабочей температуре (м),
Hs - запас надёжности, принимаемый проектировщиками – 0,5 м.в.ст.,
Pb - давление над жидкостью - в открытой системе это атмосферное давление, приблизительно равное 10,2 м.в.ст. (Pb*10.2)
Характеристика насоса NPSH (Net Positive Suction Head) означает высоту всасывания, измеренную на всасывающем входе в насос, с поправкой на давление насыщенных паров конкретной перекачиваемой жидкости,на максимальной производительности насоса.

Т.е. физический смысл формулы H= Pb*10.2 – NPSH – Hf – Hv – Hs состоит в том, чтобы на максимальных рабочих параметрах насоса разряжение в его всасывающем патрубке не превышало бы давление насыщенных паров жидкости при рабочей температуре, т.е. система имела бы требуемый для бескавитационной работы подпор.

Совершенно очевидны отсюда и остальные пути снижения вероятности появления кавитации:
- изменить диаметр на всасывании на больший – уменьшить потери (Hf),
- переместить насос ближе к месту забора жидкости – уменьшить потери (Hf),
- поставить более гладкую трубу, уменьшить число поворотов, задвижек, клапанов– уменьшить потери (Hf),
- понизить разряжение на всасывании изменением высоты установки насоса или использованием бустерного насосного оборудования – повысить (Pb),
- снизить температуру жидкости - уменьшить (Hv),
- уменьшить производительность насоса, снизить число оборотов – понизить (NPSH).
Все эти меры направлены на уменьшение возможности возникновения кавитации в насосе и ведут к долговременной и безопасной работе насосов.

Читайте также: