Своей полярной сплюснутостью земля обязана

Обновлено: 02.12.2022

Декартисты против Ньютонианцев

Дайте волю воображению и представьте себе картинку:

Ужин философов, 1772 - 1773 г., Жан Юбер

Ужин философов, 1772 - 1773 г., Жан Юбер

1733 год: Париж. Кафе "Градо": излюбленное место сборищ ученых из Академии Наук. Предлагают кофе, сидр и то, что покрепче. Где-то играет музыка. Градо - храм науки: в отличие от салонных встреч тут можно спорить даже с самыми знатными гостями. Мужчины плотным кружком обступили некрасивого носатого докладчика. Тот превозносит англичанина Исаака Ньютона: "Представьте себе, он нашу планету может описать математически. Сколько гармонии и красоты в этой мысли! А сколько благородства в его сородичах, что наградили его почетным титулом Сэра, несмотря на хмурый нрав и нелюбовь к невежественным сборищам. Разве у нас такое мыслимо, когда наука зависит от мнения света?". "Позвольте, - кто-то тут же ему возражает, - да ваш Ньютон утверждает, что Земля сплюснутая. Следует ли так им восхищаться?" Это в плотный кружок “ньютонианцев” затесался “декартист”. Они тут не в чести. С “несогласным” тут же ожесточенно вступает в спор месье Мопертюи и один из его учеников: юноша с нежнейшими глазами и дамской прической. Градус накаляется, аргументы крепчают. Трещат стулья, взрываются бутылки с сидром, лают перепуганные собачки.

Вот так или примерно так выглядел привычный спор о форме Земли (ее сплюснутости или вытянутости), который с конца XVII века то угасал, то полыхал с новой силой в научных кругах Европы.

Рене Декарт, 1675-1703, гравюра Жака Любена по портрету Франса Хальса © The Trustees of the British Museum

Рене Декарт, 1675-1703, гравюра Жака Любена по портрету Франса Хальса © The Trustees of the British Museum

В XVII веке жил во Франции такой ученый: Рене Декарт. Помимо декартовой системы координат, с которой мы впервые сталкиваемся в школе, он создал целое философское течение: картезианство. Кстати, "картезианство" и “декартизм” - это просто разное прочтение одного и того же имени, которое пишется как Descartes.

Так вот, среди прочего, Декарт считал что Земля омывается вихрями, которые истончают ее. И Земля должна быть слегка вытянута от полюса к полюсу (подобно дыне).

Это предположение, вроде как, было подтверждено экспериментально. Французский астроном и геодезист Жак Кассини, сын директора парижской обсерватории Джованни Кассини, в результате градусных измерений (многолетних определений длины 6 градусов парижского меридиана) получил, разную длину 1 градуса меридиана на севере и юге Франции.

При этом, в конце того же XVII века Ньютон (в "Началах натуральной философии") писал:

“Земля при экваторе выше, нежели при полюсах, примерно на 17 миль".

Он полагал, что мысль его доказывают маятниковые эксперименты астронома Рише. Тот путешествовал по миру с точным маятником и заметил, что один и тот же откалиброванный стержень маятника на разных широтах колеблется с разной периодичностью. Стало быть, Земля сплюснута как тыква. На том стояли ньютонианцы.

Обложка

Обложка "Начал натуральной философии" Ньютона.

Надо сказать, что речь шла о “сплюснутости или вытянутости” планеты в такой малой степени, что едва ли ее можно было надежно обнаружить существующими методами наблюдений. Поэтому “неугодные результаты”, в зависимости от того, кто ты: декартист или ньютонианец, всегда можно было списать на погрешности измерений. Тем не менее, Французская Академия Наук регулярно объявляла конкурсы на научные работы по теме о Фигуре Земли, что позволяло ученым оттачивать ум, состязаясь за денежный приз и публикации.

Но вернемся к первоначальной сценке в кафе. Тут возникает резонный вопрос: зачем в 1733 году о Земле спорить, если можно пьянствовать и читать стихи?

Тут все очень просто: у нас эпоха просвещения. Умным быть престижно, и все приличные люди занимаются математикой или астрономией. Это кафе Градо: место неформального общения ученых из Академии Наук. Чем больше тебя знают в тусовке, тем больше у тебя возможностей для поступления на службу, преподавания или поиска покровителя. Кстати, тот юноша с нежными глазами, что вступался за Ньютона - маркиза Эмили дю Шатле. Она специально пришла поучаствовать в дискуссии, а женщин в кафе не пускали - пришлось переодеться. В будущем она станет серьезным математиком и возлюбленной Вольтера (он и есть тот носатый докладчик). Пока же, она очень увлечена биномами и своим учителем математики: мсье Мопертюи, главой парижского “кружка” ньютонианцев.

Мадам дю Шатле за своим столом, 18 в., Морис Кантен де Ла Тур

Мадам дю Шатле за своим столом, 18 в., Морис Кантен де Ла Тур

Про Мопертюи

“Этот Мопертюи как муха. То он тут, то он там. Ах, бывает ли он на месте?”.

Эмили дю Шатле (его ученица и подруга) писала ему как-то:

“Мсье, я послала за Вами к Вам домой и в Академию, чтобы сказать, что вечер проведу дома одна. За биномами и триномами. Но я не могу учиться, если Вы не зададите мне задачу, и эту задачу я желаю страстно”.

Про Вольтера

Носатый господин из нашей сценки (первая картинка) - Шарль Мари Аруэ, Вольтер. Именно из-за него спор декартистов и ньютонианцев в Париже начала 1730-х вспыхнул с новой силой. Несколько лет назад он вернулся из ссылки в Англию (в противном случае ему грозила бы Бастилия), из которой привез увлечение Ньютоном.

Будучи популяризатором и любителем науки, Вольтер не имел достаточно глубоких математических познаний, чтобы понять “Начала натуральной философии”, которые продвигал. Кстати, эта книга тогда публиковалась только на латыни, читало ее немного людей, а понимало еще меньше.

Маркиза дю Шатле потом будет много лет заниматься переводом “Начал” на французский, и ее перевод, кстати, до сих пор остается единственным. Тут следует сделать ремарку: “Начала натуральной философии” - это такой свод рассуждений. Автор выдвигает предположение, а потом его обосновывает тем математическим аппаратом (или просто словесными аргументами), которым располагает. Тот же Мопертюи, переписываясь со своим швейцарским коллегой Иоганом Бернулли (еще одна фамилия знакомая из школьного курса), жаловался на то, что ему не всегда удается проследить и повторить рассуждения автора. Заметим, это все совершенно не мешало веселым и ожесточенным околонаучным спорам. Был бы повод собраться.

Идея экспедиции

Экспедицию Луи Годен предложил сюда: в район Кито (тогда вице-королевство Перу).

Экспедицию Луи Годен предложил сюда: в район Кито (тогда вице-королевство Перу).

Что собирались измерять?

Ответ прост: участники экспедиции должны были выполнять градусные измерения. То есть, измерить длину дуги меридиана (в линейной мере - туазах или милях) в 1 градус на широте экватора. Далее 1 градус меридиана на экваторе сравнили бы с 1 градусом меридиана на широте Парижа и стало бы ясно: мы имеем дело с шаром, с вытянутым эллипсоидом (по Декарту) или сплюснутым эллипсоидом (по Ньютону).

примерно такие измерения планировал Луи Годен

примерно такие измерения планировал Луи Годен

Придумал градусные измерения (а заодно определил радиус Земли) греческий ученый Эратосфен Киренский.

Как узнать размеры Земли

Тут следует задаться вопросом: а как можно было бы определить радиус шарообразной Земли? Не можем же мы пробурить шахту до ее центра (там, вроде как еще и очень горячо) и измерить глубину этой шахты?

Помните, как выглядит меридиан? Это окружность, проходящая через северный и южный полюс, образующая плоскость, перпендикулярную экватору (иными словами, это окружность, которую мы получим, если разрежем Землю вдоль оси север-юг). Так вот, длина дуги меридиана (L) по формуле из школьной геометрии будет являться радиусом Земли (R), умноженным на угол, этой дуге соответствующий (dB).

L = R*dB


Стало быть, задача определения радиуса Земли сводится к измерению длины дуги меридиана (L) и углового значения этой дуги меридиана (dB), проще говоря, разности широт севера и юга дуги (B1 - B0).

И вот тут мы подходим вплотную к Эратосфену. Дело было в Александрии, в третьем веке до нашей эры. Ученый, по приглашению царя Птолемея Третьего заведовал Александрийской библиотекой и обучал наукам царских отпрысков, в свободное время занимаясь литературой, математикой и астрономией.

Эратосфен, обучающий в Александрии (1635 г., Бернардо Строцци, Музей Изящных Искусств Монреаля)

Эратосфен, обучающий в Александрии (1635 г., Бернардо Строцци, Музей Изящных Искусств Монреаля)

Градусные измерения Эратосфена

Он знал, что к югу от Александрии (для тех, кто, как я, путается в географии, это в Египте) находится город Сиена (сегодня он называется Асуан). Соответственно, для определения радиуса Земли он собирался измерить в линейной и угловой мере длину дуги меридиана между этим городами.

Если вам кажется, что Сиена и Александрия не лежат на одном меридиане, то вы совершенно правы. Но Эратосфен за 300 лет до нашей эры об этом знать не мог.

Если вам кажется, что Сиена и Александрия не лежат на одном меридиане, то вы совершенно правы. Но Эратосфен за 300 лет до нашей эры об этом знать не мог.

Длину этой дуги сегодня очень легко спросить у Гугла: это около 800 км. Понятно, что Эратосфен не мог себе позволить идти все это расстояние по дороге с веревкой или мерным жезлом. Он поступил остроумнее: узнал у погонщика верблюдов о времени перехода между городами и принял скорость верблюда за константу.

Оставалось узнать разность широт (dB). К счастью, благодаря астрономической практике, Эратосфен знал, что в день летнего солнцестояния в Сиене солнце находится в зените (то есть, светит прямо в макушку городской колодец). Для Александрии был известен угол, под которым в полдень этого дня солнечные лучи падают на гномон скафиса (такой древний угломерный прибор в виде чаши). Этот угол и был разностью широт Сиены и Александрии. Эратосфен разделил расстояние в 5000 стадиев на полученный угол и первым определил радиус Земного шара.

Дальше, правда, с этим возникли сложности. Более поздние ученые ломали головы над тем, какие стадии имел ввиду Эратосфен: греческие, египетские или фараонские. Но подобные определения размеров Земли по измерению дуги меридиана назвали градусными и повторяли в разных странах с завидной регулярностью. Ими развлекались, например, Аль Бируни на Востоке, и Эратосфен Батавский на Западе.

Совершенствовались способы измерений: гномон заменила астролябия, верблюдов - экипаж со счетчиком оборотов колеса и к 17-18 веку ученые накопили массу результатов градусных измерений: с разной точностью и в разных единицах длины. И все они вызывали вопросы. К примеру, шесть градусов парижского меридиана династия астрономов Кассини (с аббатом Пикаром) измеряла около семидесяти лет в разных комбинациях. И именно их измерения экспериментально доказывали, что Земля должна быть вытянутой, как дыня. Ньютон утверждал обратное, и "Ньютон не мог так сильно ошибаться", как говаривал математик Пьер Моро де Мопетюи из начала нашей истории. Великая Градусная Экспедиция должна была подтвердить правоту одной из сторон спора.

Про маятниковые эксперименты Рише

Помните, в самом начале я упоминала, что Исаак Ньютон в своих "Началах Натуральной Философии" апеллирует к известным экспериментам французского астронома Рише, которые подтверждали его теорию о сплюснутости Земли?

Вот, что пишет Ньютон (в переводе Крылова):

Так как длины маятников, совершающих размахи в одинаковое время, пропорциональны величине силы тяжести, в широте Парижа длина маятника, делающего размах в 1 секунду равна 3 футам 8,5 линиям, то на широте экватора длина маятника под экватором будет меньше маятника парижского на 1,087 линии.

Линии - это такие единицы длины, на которые делились футы (1/144). Однако, в разных странах футы были разными, так что и линии - тоже. Вообще, единицы измерений прошлого - та еще головная боль.

То есть, чтобы отсчитывать ровно 1 секунду, стержень маятника на экваторе должен быть короче, чем стержень маятника в Париже на 2,3 мм. Кажется, величина небольшая. Можно было бы и пренебречь?

В качестве доказательства правильности своих суждений с длиной маятника, Ньютон приводил эксперименты французского астронома Ж. Рише 1672 и последующих годов. Так называемые "маятниковые эксперименты".

Иллюстрация из книги Ж.Рише, где он описывает свои маятниковые эксперименты. Интерьер астронома: маятниковые часы, астролябия, секстант (вроде бы), глобус.

Иллюстрация из книги Ж.Рише, где он описывает свои маятниковые эксперименты. Интерьер астронома: маятниковые часы, астролябия, секстант (вроде бы), глобус.

На побережье Южной Америки, где Жан Рише проводил астрономические наблюдения, маятниковые часы, идеально выверенные в Париже, начинали отставать (то есть, минута в них становилась длиннее). Причем отставание достигало 2,5 минут в сутки. Что для наблюдения светил - очень много. Правильный ход часов удалось восстановить, лишь укоротив стержень маятника.

Когда же часы вернули в Париж, оказалось, что они спешат. Так Рише обнаружил, что период колебания маятниковых часов (время, за которое груз на подвесе проходит путь от верхней точки к нижней) зависит не только от длины маятника, но и от широты, на которой находятся часы прямо сейчас.

Эффект был наглядным, любопытным и необъяснимым. Еще бы: время течет неравномерно на разных широтах! В итоге сам Рише и его современники-астрономы начали в обязательном порядке проводить эксперименты с маятниковыми часами, когда отправлялись в путешествия, особенно если отправлялись на юг. Результаты показывали разницу от 1 до почти 2 линий (2-4 мм) в длине маятника на разных широтах у разных наблюдателей.

Чем можно было объяснить изменение периода колебаний маятника вблизи экватора? Основным предположением декартистов было расширение материала (ведь в южных колониях жарко и влажно), но Ньютон не соглашался. Он полагал, что температурное расширение может дать 0,25 линии в разнице длины маятника. Но никак не 1,25 или 2 линии, которая следовала из экспериментов:

Стержень маятниковых часов никогда летом не выставляется на солнце и никогда не достигает теплоты человеческого тела, поэтому стержень маятника длиною в 3 фута (90см) будет немногим длиннее летом, нежели зимою, но разность этих длин не превзойдет 0,25 линии.

Ученый объяснял изменение периода колебаний часов тем, что меняется сила тяжести, действующая на маятник. У экватора она меньше. А значит - расстояние до центра Земли на экваторе больше, чем в высоких широтах. Стало быть - земля сплюснутая. Любопытно что Ньютон апеллирует к опыту французских астрономов, которые в нашей истории традиционно поддерживали Декарта.

Маятниковый гравиметр (маятник Катера), конструкция начала XIX века. Потомок маятниковых экспериментов Рише.

Маятниковый гравиметр (маятник Катера), конструкция начала XIX века. Потомок маятниковых экспериментов Рише.

Эксперименты Рише положили начало маятниковой гравиметрии: способу изучения поля силы тяжести Земли по наблюдению за периодом колебаний маятника фиксированной длины. Гравиметрия позволяет определить, как меняется сила тяжести на поверхности Земли в разных местах. И, помимо удовлетворения фундаментального любопытства, она помогает геофизикам и изыскателям в поиске полезных ископаемых, месторождений нефти и газа, археологам в поиске забытых подземных ходов и помещений.
Кстати, у нас в лаборатории гравиметрии МИИГАиК в шкафу стояли именно такие красивые маятниковые гравиметры, правда, более поздние: стержни их покачивались на алмазной игле. На занятиях нам выдавали более простые - пружинные гравиметры. В них сила тяжести отклоняет перекрученную кварцевую пружину, помещенную в изолированную колбу: чем больше угол отклонения, тем больше сила тяжести. И была такая шутка: "Кто такой в подвале ночью, на коленках, над термосом? Конечно же, гравиметрист!".

Но в 1734 году, на котором мы оставили наш рассказ об экспедиции, о пружинных гравиметрах никто не слышал. Да и о гравиметрах вообще. Астроному Луи Годену предстояло защитить проект экспедиции перед попечителем Академии Наук: графом Морепа. Определить бюджет, подобрать команду и спланировать работы. Об этом в следующий раз.

§ 13. О пределение расстояний и размеров тел в С олнечной системе

1. Форма и размеры Земли

П редставление о Земле как о шаре, который свободно, без всякой опоры находится в космическом пространстве, является одним из величайших достижений науки древнего мира.

Считается, что первое достаточно точное определение размеров Земли провёл греческий учёный Эратосфен (276—194 до н. э.), живший в Египте. Идея, положенная в основу измерений Эратосфена, весьма проста: измерить длину дуги земного меридиана в линейных единицах и определить, какую часть полной окружности эта дуга составляет. Получив эти данные, можно вычислить длину дуги в 1 ° , а затем длину окружности и величину её радиуса, т. е. радиуса земного шара. Очевидно, что длина дуги меридиана в градусной мере равна разности географических широт двух пунктов: ϕ B – ϕ A .


Рис. 3.8. Способ Эратосфена

Для того чтобы определить эту разность, Эратосфен сравнил полуденную высоту Солнца в один и тот же день в двух городах, находящихся на одном меридиане. Измерив высоту Солнца h B (рис. 3.8) в полдень 22 июня в Александрии, где он жил, Эратосфен установил, что Солнце отстоит от зенита на 7,2 ° . В этот день в полдень в городе Сиена (ныне Асуан) Солнце освещает дно самых глубоких колодцев, т. е. находится в зените ( h A = 90 ° ). Следовательно, длина дуги составляет 7,2 ° . Расстояние между Сиеной ( A ) и Александрией ( B ) около 5000 греческих стадий — l .

Стадией в Древней Греции считалось расстояние, которое проходит легко вооружённый греческий воин за тот промежуток времени, в течение которого Солнце, коснувшееся горизонта своим нижним краем, целиком скроется за горизонт.

Несмотря на кажущееся неудобство такой единицы и достаточную громоздкость словесного определения, её введение выглядело вполне оправданным, учитывая, что строгая периодичность небесных явлений позволяла использовать их движение для счёта времени.

Обозначив длину окружности земного шара через L , получим такое выражение:

= ,

откуда следует, что длина окружности земного шара равняется 250 тыс. стадий.

Точная величина стадии в современных единицах неизвестна, но, зная, что расстояние между Александрией и Асуаном составляет 800 км, можно полагать, что 1 стадия = 160 м. Результат, полученный Эратосфеном, практически не отличается от современных данных, согласно которым длина окружности Земли составляет 40 тыс. км.


Рис. 3.9. Параллактическое смещение

Определить географическую широту двух пунктов оказывается гораздо проще, чем измерить расстояние между ними. Зачастую непосредственное измерение кратчайшего расстояния между этими пунктами оказывается невозможным из-за различных естественных препятствий (гор, рек и т. п.). Поэтому применяется способ, основанный на явлении параллактического смещения и предусматривающий вычисление расстояния на основе измерений длины одной из сторон (базиса — BC ) и двух углов B и C в треугольнике ABC (рис. 3.9).

Параллактическим смещением называется изменение направления на предмет при перемещении наблюдателя.

Чем дальше расположен предмет, тем меньше его параллактическое смещение, и чем больше перемещение наблюдателя (базис измерения), тем больше параллактическое смещение.


Рис. 3.10. Схема триангуляции

Для определения длины дуги используется система треугольников — способ триангуляции , который впервые был применён ещё в 1615 г. Пункты в вершинах этих треугольников выбираются по обе стороны дуги на расстоянии 30—40 км друг от друга так, чтобы из каждого пункта были видны по крайней мере два других. Основой для вычисления длин сторон во всех этих треугольниках является размер базиса AC (рис. 3.10). Точность измерения базиса длиной в 10 км составляет около 1 мм. Во всех пунктах устанавливают геодезические сигналы — вышки высотой в несколько десятков метров. С вершины сигнала с помощью угломерного инструмента ( теодолита ) измеряют углы между направлениями на два-три соседних пункта. Измерив углы в треугольнике, одной из сторон которого является базис, геодезисты получают возможность вычислить длину двух других его сторон. Проводя затем измерение углов из пунктов, расстояние между которыми вычислено, можно узнать длину двух очередных сторон в треугольнике. Зная длину сторон этих треугольников, можно определить длину дуги AB .

В какой степени форма Земли отличается от шара, выяснилось в конце XVIII в. Для уточнения формы Земли Французская академия наук снарядила сразу две экспедиции. Одна из них работала в экваториальных широтах Южной Америки в Перу, другая — вблизи Северного полярного круга на территории Финляндии и Швеции. Измерения показали, что длина одного градуса дуги меридиана на севере больше, чем вблизи экватора. Последующие исследования подтвердили, что длина дуги одного градуса меридиана увеличивается с возрастанием географической широты. Это означало, что форма Земли — не идеальный шар: она сплюснута у полюсов. Её полярный радиус на 21 км короче экваториального.

Для школьного глобуса масштаба 1 : 50 000 000 отличие этих радиусов будет всего 0,4 мм, т. е. совершенно незаметно.


Отношение разности величин экваториального и полярного радиусов Земли к величине экваториального называется сжатием . По современным данным, оно составляет , или 0,0034. Это означает, что сечение Земли по меридиану будет не окружностью, а эллипсом, у которого большая ось проходит в плоскости экватора, а малая совпадает с осью вращения.


В XX в. благодаря измерениям, точность которых составила 15 м, выяснилось, что земной экватор также нельзя считать окружностью. Сплюснутость экватора составляет всего (в 100 раз меньше сплюснутости меридиана). Более точно форму нашей планеты передаёт фигура, называемая эллипсоидом, у которого любое сечение плоскостью, проходящей через центр Земли, не является окружностью.

В настоящее время форму Земли принято характеризовать следующими величинами:

сжатие эллипсоида — 1 : 298,25;

средний радиус — 6371,032 км;

длина окружности экватора — 40075,696 км.

2. Определение расстояний в Солнечной системе. Горизонтальный параллакс

И змерить расстояние от Земли до Солнца удалось лишь во второй половине XVIII в., когда был впервые определён горизонтальный параллакс Солнца. По сути дела, при этом измеряется параллактическое смещение объекта, находящегося за пределами Земли, а базисом является её радиус.

Горизонтальным параллаксом ( p) называется угол, под которым со светила виден радиус Земли, перпендикулярный лучу зрения (рис. 3.11) .


Рис. 3.11. Горизонтальный параллакс светила

Из треугольника OAS можно выразить величину — расстояние OS = D :


D = ,

где R — радиус Земли. По этой формуле можно вычислить расстояние в радиусах Земли, а зная его величину, — выразить расстояние в километрах.

Очевидно, что чем дальше расположен объект, тем меньше его параллакс. Наибольшее значение имеет параллакс Луны, который меняется в связи с тем, что Луна обращается по эллиптической орбите, и в среднем составляет 57 ʹ . Параллаксы планет и Солнца значительно меньше. Так, параллакс Солнца равен 8,8 ʺ . Такому значению параллакса соответствует расстояние до Солнца, примерно равное 150 млн км. Это расстояние принимается за одну астрономическую единицу (1 а. е.) и используется при измерении расстояний между телами Солнечной системы.

Известно, что для малых углов sin p ≈ p , если угол p выражен в радианах. В одном радиане содержится 206 265 ʺ . Тогда, заменяя sin p на p и выражая этот угол в радианной мере, получаем формулу в виде, удобном для вычислений:


D = R ,

или (с достаточной точностью)


D = R .

Во второй половине XX в. развитие радиотехники позволило определять расстояния до тел Солнечной системы посредством радиолокации . Первым объектом среди них стала Луна. Затем радиолокационными методами были уточнены расстояния до Венеры, Меркурия, Марса и Юпитера. На основе радиолокации Венеры величина астрономической единицы определена с точностью порядка километра. Столь высокая точность определения расстояний — необходимое условие для расчётов траекторий полёта космических аппаратов, изучающих планеты и другие тела Солнечной системы. В настоящее время благодаря использованию лазеров стало возможным провести оптическую локацию Луны. При этом расстояния до лунной поверхности измеряются с точностью до сантиметров.

П РимеР РешениЯ задаЧи

На каком расстоянии от Земли находится Сатурн, когда его горизонтальный параллакс равен 0,9 ʺ ?

Известно, что параллакс Солнца на расстоянии в 1 а. е. равен 8,8 ʺ .

Тогда, написав формулы для расстояния до Солнца и до Сатурна и поделив их одна на другую, получим:

= .

D 1 = = = 9,8 а. е.

Ответ : D 1 = 9,8 а. е.

3. Определение размеров светил


Рис. 3.12. Угловые размеры светила

З ная расстояние до светила, можно определить его линейные размеры, если измерить его угловой радиус ρ (рис. 3.12). Формула, связывающая эти величины, аналогична формуле для определения параллакса:


D = .

Учитывая, что угловые диаметры даже Солнца и Луны составляют примерно 30 ʹ , а все планеты видны невооружённым глазом как точки, можно воспользоваться соотношением: sin ρ ≈ ρ . Тогда:

D = и D = .


r = R .

Если расстояние D известно, то

где величина ρ выражена в радианах.

П РимеР РешениЯ задаЧи

Чему равен линейный диаметр Луны, если она видна с расстояния 400 000 км под углом примерно 30 ʹ ?

Если ρ выразить в радианах, то


d = = 3490 км.

Ответ : d = 3490 км.


В опросы 1. Какие измерения, выполненные на Земле, свидетельствуют о её сжатии? 2. Меняется ли и по какой причине горизонтальный параллакс Солнца в течение года? 3. Каким методом определяется расстояние до ближайших планет в настоящее время?


У пражнение 11 1. Чему равен горизонтальный параллакс Юпитера, наблюдаемого с Земли в противостоянии, если Юпитер в 5 раз дальше от Солнца, чем Земля? 2. Расстояние Луны от Земли в ближайшей к Земле точке орбиты (перигее) 363 000 км, а в наиболее удалённой (апогее) — 405 000 км. Определите горизонтальный параллакс Луны в этих положениях. 3. Во сколько раз Солнце больше, чем Луна, если их угловые диаметры одинаковы, а горизонтальные параллаксы равны 8,8 ʺ и 57 ʹ соответственно? 4. Чему равен угловой диаметр Солнца, видимого с Нептуна?

Читайте также: