Геном человека это собственность

Обновлено: 19.05.2024

Всеобщая декларация о геноме человека и правах человека

Принята 11 ноября 1997 года Генеральной конференцией Организации Объединенных Наций по вопросам образования, науки и культуры

принимая во внимание, без ущерба для их положений, международные акты, которые могут быть связаны с прикладным использованием генетики в области интеллектуальной собственности, в частности Бернскую конвенцию об охране литературных и художественных произведений, принятую 9 сентября 1886 г., и Всемирную конвенцию ЮНЕСКО об авторском праве, принятую 6 сентября 1952 г., впоследствии пересмотренные в Париже 24 июля 1971 г., Парижскую конвенцию об охране промышленной собственности, принятую 20 марта 1883 г. и впоследствии пересмотренную в Стокгольме 14 июля 1967 г., Будапештский договор ВОИС о международном признании депонирования микроорганизмов в целях процедуры выдачи патентов, заключенный 28 апреля 1977 г., и Соглашение об аспектах прав интеллектуальной собственности, которые касаются торговли (АДПИК), содержащееся в приложении к Соглашению о создании Всемирной торговой организации, которое вступило в силу 1 января 1995 г.,

напоминая о резолюциях 22 C/13.1, 23 C/13.1, 24 C/13.1, 25 C/5.2 и 7.3, 27 C/5.15 и 28 C/0.12, 2.1 и 2.2, которые возлагают на ЮНЕСКО обязанность поощрять и развивать анализ этических проблем и принимать соответствующие меры в связи с последствиями научно-технического прогресса в областях биологии и генетики в рамках соблюдения прав человека и основных свобод,

признавая, что научные исследования по геному человека и практическое применение их результатов открывают безграничные перспективы для улучшения здоровья отдельных людей и всего человечества, подчеркивая вместе с тем, что такие исследования должны основываться на всестороннем уважении достоинства, свобод и прав человека, а также на запрещении любой формы дискриминации по признаку генетических характеристик,

провозглашает следующие принципы и принимает настоящую Декларацию.

А. Человеческое достоинство и геном человека

Статья 1

Геном человека лежит в основе изначальной общности всех представителей человеческого рода, а также признания их неотъемлемого достоинства и разнообразия. Геном человека знаменует собой достояние человечества.

Статья 2

а) Каждый человек имеет право на уважение его достоинства и его прав, вне зависимости от его генетических характеристик.

b) Такое достоинство непреложно означает, что личность человека не может сводиться к его генетическим характеристикам, и требует уважения его уникальности и неповторимости.

Статья 3

Геном человека в силу его эволюционного характера подвержен мутациям. Он содержит в себе возможности, которые проявляются различным образом в зависимости от природной и социальной среды каждого человека, в частности состояния здоровья, условий жизни, питания и образования.

Статья 4

Геном человека в его естественном состоянии не должен служить источником извлечения доходов.

В. Права соответствующих лиц

Статья 5

a) Исследования, лечение или диагностика, связанные с геномом какого-либо человека, могут проводиться лишь после тщательной предварительной оценки связанных с ними потенциальных опасностей и преимуществ и с учетом всех других предписаний, установленных национальным законодательством.

b) Во всех случаях следует заручаться предварительным, свободным и ясно выраженным согласием заинтересованного лица. Если оно не в состоянии его выразить, то согласие или разрешение должны быть получены в соответствии с законом, исходя из высших интересов этого лица.

c) Должно соблюдаться право каждого человека решать быть или не быть информированным о результатах генетического анализа и его последствиях.

d) В случае исследований их документальные результаты следует представлять на предварительную оценку согласно соответствующим национальным и международным нормам или руководящим принципам.

e) Если какое-либо лицо не в состоянии выразить в соответствии с законом своего согласия, исследования, касающиеся его генома, могут быть проведены лишь при условии, что они непосредственным образом скажутся на улучшении его здоровья и что будут получены разрешения и соблюдены меры защиты, предусматриваемые законом. Исследования, не позволяющие ожидать какого-либо непосредственного улучшения здоровья, могут проводиться лишь в порядке исключения, с максимальной осторожностью, таким образом, чтобы заинтересованное лицо подвергалось лишь минимальному риску и испытывало минимальную нагрузку, при условии, что эти исследования проводятся в интересах здоровья других лиц, принадлежащих к той же возрастной группе или обладающих такими же генетическими признаками, с соблюдением требований, предусматриваемых законом, а также с обеспечением совместимости этих исследований с защитой прав данного лица.

Статья 6

По признаку генетических характеристик никто не может подвергаться дискриминации, цели или результаты которой представляют собой посягательство на права человека, основные свободы и человеческое достоинство.

Статья 7

Конфиденциальность генетических данных, которые касаются человека, чья личность может быть установлена, и которые хранятся или подвергаются обработке в научных или любых других целях, должна охраняться в соответствии с законом.

Статья 8

Каждый человек в соответствии с международными правом и национальным законодательством имеет право на справедливую компенсацию того или иного ущерба, причиненного в результате непосредственного и детерминирующего воздействия на его геном.

Статья 9

В целях защиты прав человека и основных свобод ограничения, касающиеся принципов согласия и конфиденциальности, могут вводиться лишь в соответствии с законом по крайне серьезным причинам и в рамках международного публичного права и международного права в области прав человека.

С. Исследования, касающиеся генома человека

Статья 10

Никакие исследования, касающиеся генома человека, равно как и никакие прикладные исследования в этой области, особенно в сферах биологии, генетики и медицины, не должны превалировать над уважением прав человека, основных свобод и человеческого достоинства отдельных людей или, в соответствующих случаях, групп людей.

Статья 11

Не допускается практика, противоречащая человеческому достоинству, такая, как практика клонирования в целях воспроизводства человеческой особи. Государствам и компетентным международным организациям предлагается сотрудничать с целью выявления такой практики и принятия на национальном и международном уровнях необходимых мер в соответствии с принципами, изложенными в настоящей Декларации.

Статья 12

a) Следует обеспечивать всеобщий доступ к достижениям науки в области биологии, генетики и медицины, касающимся генома человека, при должном уважении достоинства и прав каждого человека.

b) Свобода проведения научных исследований, которая необходима для развития знаний, является составной частью свободы мысли. Цель прикладного использования результатов научных исследований, касающихся генома человека, особенно в области биологии, генетики и медицины, заключается в уменьшении страданий людей и в улучшении состояния здоровья каждого человека и всего человечества.

D. Условия осуществления научной деятельности

Статья 13

Ответственность, являющаяся неотъемлемой частью деятельности научных работников — в том числе требовательность, осторожность, интеллектуальная честность и непредвзятость — как при проведении научных исследований, так и при представлении и использовании их результатов, должна быть предметом особого внимания, когда речь идет об исследованиях, касающихся генома человека, с учетом их этических и социальных последствий. Лица, принимающие в государственном и частном секторах политические решения в области науки, также несут особую ответственность в этом отношении.

Статья 14

Государствам следует принимать соответствующие меры, способствующие созданию интеллектуальных и материальных условий, благоприятствующих свободе проведения научных исследований, касающихся генома человека, и учитывать при этом этические, правовые, социальные и экономические последствия таких исследований в свете принципов, изложенных в настоящей Декларации.

Статья 15

Государствам следует принимать соответствующие меры, обеспечивающие рамки для беспрепятственного осуществления научных исследований, касающихся генома человека, с должным учетом изложенных в настоящей Декларации принципов, чтобы гарантировать соблюдение прав человека и основных свобод и уважение человеческого достоинства, а также охрану здоровья людей. Такие меры должны быть направлены на то, чтобы результаты этих исследований использовались только в мирных целях.

Статья 16

Государствам следует признать важное значение содействия на различных соответствующих уровнях созданию независимых, многодисциплинарных и плюралистических комитетов по этике для оценки этических, правовых и социальных вопросов, которые возникают в связи с проведением научных исследований, касающихся генома человека, и использованием результатов таких исследований.

Е. Солидарность и международное сотрудничество

Статья 17

Государствам следует практиковать и развивать солидарность с отдельными людьми, семьями и группами населения, которые особенно уязвимы в отношении заболеваний или недостатков генетического характера либо страдают ими. Государствам следует, в частности, содействовать проведению научных исследований, направленных на выявление, предотвращение и лечение генетических заболеваний или заболеваний, вызванных воздействием генетических факторов, в особенности редких заболеваний, а также заболеваний эндемического характера, от которых страдает значительная часть населения мира.

Статья 18

Государствам следует, должным и надлежащим образом учитывая изложенные в настоящей Декларации принципы, прилагать все усилия к дальнейшему распространению в международном масштабе научных знаний о геноме человека, разнообразии человеческого рода и генетических исследованиях, а также укреплять международное научное и культурное сотрудничество в этой области, в особенности между промышленно развитыми и развивающимися странами.

Статья 19

а) В рамках международного сотрудничества с развивающимися странами государствам следует поощрять меры, которые позволяют:

i) осуществлять оценку опасностей и преимуществ, связанных с проведением научных исследований, касающихся генома человека, и предотвращать злоупотребления;

ii) расширять и укреплять потенциал развивающихся стран в области проведения научных исследований по биологии и генетике человека с учетом конкретных проблем этих стран;

iii) развивающимся странам пользоваться достижениями научного и технического прогресса, дабы применение таких достижений в интересах их экономического и социального прогресса осуществлялось ради всеобщего блага;

iv) поощрять свободный обмен научными знаниями и информацией в областях биологии, генетики и медицины.

b) Соответствующим международным организациям следует оказывать поддержку и содействие инициативам, предпринимаемым государствами в вышеозначенных целях.

F. Содействие изложенным в Декларации принципам

Статья 20

Государствам следует принимать соответствующие меры с целью содействия изложенным в настоящей Декларации принципам на основе образования и использования соответствующих средств, в том числе на основе осуществления научных исследований и подготовки в многодисциплинарных областях, а также на основе оказания содействия образованию в области биоэтики на всех уровнях, в особенности предназначенному для лиц, ответственных за разработку политики в области науки.

Статья 21

Государствам следует принимать соответствующие меры, направленные на развитие других форм научных исследований, подготовки кадров и распространения информации, содействующих углублению осознания обществом и всеми его членами своей ответственности перед лицом основополагающих проблем, связанных с необходимостью защитить достоинство человека, которые могут возникать в свете проведения научных исследований в биологии, генетике и медицине, а также прикладного использования их результатов. Им также следует содействовать открытому обсуждению в международном масштабе этой тематики, обеспечивая свободное выражение различных мнений социально-культурного, религиозного или философского характера.

G. Осуществление Декларации

Статья 22

Государствам следует активно содействовать изложенным в настоящей Декларации принципам, а также способствовать их осуществлению всеми возможными средствами.

Статья 23

Государствам следует принимать соответствующие меры для содействия посредством образования, подготовки и распространения информации соблюдению вышеизложенных принципов и способствовать их признанию и действенному применению. Государствам следует также способствовать обменам между независимыми комитетами по этике и их объединению в сети по мере их создания для развития всестороннего сотрудничества между ними.

Статья 24

Международному комитету ЮНЕСКО по биоэтике следует способствовать распространению принципов, изложенных в настоящей Декларации, и дальнейшему изучению вопросов, возникающих в связи с их претворением в жизнь и развитием соответствующих технологий. Ему следует организовывать необходимые консультации с заинтересованными сторонами, такими, как уязвимые группы населения. Комитету, в соответствии с уставными процедурами ЮНЕСКО, следует готовить рекомендации для Генеральной конференции и высказывать мнение о ходе претворения в жизнь положений Декларации, особенно в том, что касается практики, которая может оказаться несовместимой с человеческим достоинством, например, случаев воздействия на потомство.

Статья 25

Никакие положения настоящей Декларации не могут быть истолкованы таким образом, чтобы служить какому-либо государству, группе людей или отдельному человеку в качестве предлога для осуществления ими каких-либо действий или любых акций, несовместимых с правами человека и основными свободами, включая принципы, изложенные в настоящей Декларации.


Обзор

Около трёх миллиардов пар нуклеотидных остатков составляют наш геном — совокупность всех молекул ДНК в клетке человека

Авторы
Редакторы

Это было семь лет назад — 26-го июня 2000 года. На совместной пресс-конференции с участием президента США и премьер-министра Великобритании представители двух исследовательских групп — International Human Genome Sequencing Consortium (IHGSC) и Celera Genomics — объявили о том, что работы по расшифровке генома человека, начавшиеся ещё в 70-х годах, успешно завершены, и черновой его вариант составлен. Начался новый эпизод развития человечества — постгеномная эра.

  • 2010 год — генетическое тестирование, профилактические меры, снижающие риск заболеваний, и генная терапия до 25 наследственных заболеваний. Медсёстры начинают выполнять медико-генетические процедуры. Широко доступна преимплантационная диагностика, активно обсуждаются ограничения в применении данного метода. В США приняты законы для предотвращения генетической дискриминации и соблюдения конфиденциальности. Практические приложения геномики доступны не всем, особенно это чувствуется в развивающихся странах.
  • 2020 год — на рынке появляются лекарства от диабета, гипертонии и других заболеваний, разработанные на основе геномной информации. Разрабатывается терапия рака, прицельно направленная на свойства раковых клеток определенных опухолей. Фармакогеномика становится общепринятым подходом для создания многих лекарств. Изменение способа диагностики психических заболеваний, появление новых способов их лечения, изменение отношения общества к таким заболеваниям. Практические приложения геномики все еще доступны далеко не везде.
  • 2030 год — определение последовательности нуклеотидов всего генома отдельного индивида станет обычной процедурой, стоимость которой менее $1000. Каталогизированы гены, участвующие в процессе старения. Проводятся клинические испытания по увеличению максимальной продолжительности жизни человека. Лабораторные эксперименты на человеческих клетках заменены экспериментами на компьютерных моделях. Активизируются массовые движения противников передовых технологий в США и других странах.
  • 2040 год — Все общепринятые меры здравоохранения основаны на геномике. Определяется предрасположенность к большинству заболеваний (ещё до рождения). Доступна эффективная профилактическая медицина с учетом особенностей индивида. Болезни определяются на ранних стадиях путем молекулярного мониторинга.
    Для многих заболеваний доступна генная терапия. Замена лекарств продуктами генов, вырабатываемыми организмом при ответе на терапию. Средняя продолжительность жизни достигнет 90 лет благодаря улучшению социо-экономических условий. Проходят серьезные дебаты о возможности человека контролировать собственную эволюцию.
    Неравенство в мире сохраняется, создавая напряженность на международном уровне.

Финал был красивым — конкурирующие организации по взаимной договоренности одновременно объявили о завершении работ по расшифровке генома человека [4], [5]. Произошло это, как мы уже писали — 26 июня 2000 года. Но разница во времени между Америкой и Англией вывела на первое место США.

Широкая известность и масштабное финансирование — палка о двух концах. С одной стороны, за счет неограниченных средств работа продвигается легко и быстро. Но с другой стороны, результат исследований должен получиться таким, каким его заказывают. К началу 2001 года в геноме человека со стопроцентной достоверностью было идентифицировано больее 20 тыс. генов. Эта цифра оказалось в три раза меньше, чем было предсказано всего за два года до этого. Вторая команда исследователей из Национального института геномных исследований США во главе с Френсисом Коллинсом независимым способом получила те же результаты — между 20 и 25 тыс. генов в геноме каждой человеческой клетки. Однако неопределенность в окончательные оценки внесли два других международных совместных научных проекта. Доктор Вильям Хезелтайн (руководитель фирмы Human Genome Studies) настаивал, что в их банке содержится информация о 140 тыс. генов. И этой информацией он не собирается пока делиться с мировой общественностью. Его фирма вложила деньги в патенты и собирается зарабатывать на полученной информации, поскольку она относится к генам широко распространенных болезней человека. Другая группа заявила о 120 тыс. идентифицированных генов человека и также настаивала, что именно эта цифра отражает общее число генов человека.

Тут необходимо уточнить, что эти исследователи занимались расшифровкой последовательности ДНК не самого генома, а ДНК-копий информационных (называемых также матричными) РНК (иРНК или мРНК). Другими словами, исследовался не весь геном, а только та его часть, что перекодируется клеткой в мРНК и направляет синтез белков. Поскольку один ген может служить матрицей для производства нескольких различных видов мРНК (что определяется многими факторами: тип клетки, стадия развития организма и т. д.), то и суммарное число всех различных последовательностей мРНК (а это именно то, что запатентовала Human Genome Studies) будет значительно бóльшим. Скорее всего, использовать это число для оценки количества генов в геноме просто некорректно.

Автоматы для секвенирования

Рисунок 2. Слева: Автоматизированная линия подготовки образцов ДНК для секвенирования в Центре Геномных исследований института Уайтхеда. Справа: Лаборатория в Сэнгеровском институте, заполненная автоматами для высокопроизводительной расшифровки последовательностей ДНК.

Завершение расшифровки заняло еще несколько лет и привело почти что к удвоению стоимости всего проекта. Однако уже в 2004 г. было объявлено, что эухроматин прочитан на 99% с общей точностью одна ошибка на 100 000 пар оснований. Количество разрывов уменьшилось в 400 раз. Аккуратность и полнота прочтения стала достаточной для эффективного поиска генов, отвечающих за то или иное наследственное заболевание (например, диабет или рак груди). Практически это означает, что исследователям больше не надо заниматься трудоемким подтверждением последовательностей генов, с которыми они работают, так как можно полностью положиться на определенную и доступную каждому последовательность всего генома.

Другую точку зрения можно проиллюстрировать, процитировав академика Кордюма В. А.:

Действительно, чтобы разумно пользоваться новой информацией, надо ее понимать. А для того чтобы понять геном — не просто прочитать, этого далеко не достаточно, — нам потребуются десятилетия. Слишком уж сложная картина вырисовывается, и чтобы осознать её, нам надо будет поменять многие стереотипы. Поэтому на самом деле расшифровка генома ещё продолжается и будет продолжаться. И будем ли мы стоять в стороне или станем, наконец, активными участниками этой гонки — зависит от нас.

Генетический телескоп

Хотя чисто техническая возможность секвенировать геном была показана еще в 70-х годах, когда был расшифрован первый геном вируса, о человеке задумались не сразу. По легенде, эта идея оформилась благодаря биологу Роберту Синшеймеру из Калифорнийского университета в Санта-Крус. Его коллеги-астрономы работали над созданием самого большого (на тот момент) наземного телескопа, и Синшеймер раздумывал над проектом подобного масштаба в биологии.


Шкаф с фрагментом человеческого генома, который стоит в лондонском музее Wellcome Collection. Полностью расшифровка занимает сотни томов, в каждом из которых около тысячи страниц

Russ London / Wikimedia commons


Разворот одного из томов с расшифровкой человеческого генома из лондонского музея Wellcome Collection

Adam Nieman / flickr / CC BY-SA 2.0

В обсуждении участвовал Уолтер Гилберт, который за 10 лет до того предложил свой метод секвенирования ДНК (известный как метод Максама-Гилберта или метод химической деградации ДНК), практически одновременно с Фредериком Сэнгером. Он загорелся идеей создания геномного института и увлек ей первооткрывателя структуры ДНК Джеймса Уотсона и Чарльза Делиси, который возглавлял подразделение здоровья и окружающей среды в Министерстве энергетики США. Последнему геномный проект виделся логичным продолжением исследований влияния радиации на человека. В 1986 году они уже подсчитывали затраты на расшифровку последовательности генома человека.


Одна из автоматизированных линий для подготовки образцов в Институте Уайтхеда в Центре геномных исследований, где секвенировали геном человека

International Human Genome Sequencing Consortium / Nature, 2001

Несмотря на критику и ценник, им удалось продавить как Министерство энергетики, так и Национальные институты здоровья США (NIH). В 1990 году проект стартовал. Панель экспертов настоятельно порекомендовала кроме генома человека заняться также исследованием геномов модельных организмов: кишечной палочки, дрожжей, круглых червей и мыши — чтобы в случае успеха гены человека было с чем сравнивать.

В авторах статьи 2001 года были члены International Human Genome Sequencing Consortium из 20 научных групп США, Великобритании, Германии, Франции, Японии и Китая.


Обложка журнала Time, вышедшего в 26 июня 2000 года. Слева — Крейг Вентер, справа Фрэнсис Коллинз

Почти одновременно со стартом проекта в США, советский академик Александр Баев смог убедить Горбачева выделить значительное финансирование на оборудование лабораторий и создание научных групп, которые могли бы участвовать в международном консорциуме по расшифровке генома человека. По воспоминаниям академика Льва Киселева, который в то время был председателем научного совета российской части программы, отечественный проект начинался очень активно — на его развитие было выделено около 20 миллионов долларов. Однако в 90-х годах государство уже не могло финансировать столь дорогостоящие фундаментальные исследования, и участие в консорциуме, хотя и не закрылось окончательно, было сокращено до минимума.


Фрагмент физической карты 19-й хромосомы, которую читали в Ливерморской национальной лаборатории при участии ИБХ РАН


Обложки журналов Science и Nature, в которых вышли статьи HPG и Celera Genetics

Science, 2001; Nature, 2001

Предпосылки и последствия

В 80-е годы у генетиков уже были инструменты, позволяющие исследовать размер хромосом и расположение на них генов — в основном, при помощи ферментативного расщепления ДНК рестриктазами, разделения фрагментов в геле и гибридизации с радиоактивно меченой последовательностью. Взглянуть на ДНК более пристально удалось благодаря изобретению производительного метода секвенирования англичанином Фредериком Сэнгером, который до того уже придумал способ чтения аминокислотной последовательности белковых молекул.

Определение последовательности ДНК по Сэнгеру, в свою очередь, стало возможным благодаря открытию ДНК-полимеразы — фермента, который в клетке обеспечивает удвоение молекул ДНК за счет комплементарного достраивания цепи на одноцепочечной матрице.


Фрагмент расшифрованной последовательности в геле


Источник: Jennifer Commins et al. / Biological Procedures Online, 2009


Порядок действий при использовании метода секвенирования, который применяли в Celera Genomics

Источник: Jennifer Commins et al. / Biological Procedures Online, 2009

Неудивительно, что многим ведущим генетикам эта задача казалась нерешаемой. Однако по ходу выполнения проекта развитие технологий облегчило ученым работу. Среди технических достижений можно отметить появление автоматического капиллярного секвенатора, где фрагменты разделялись в тонких трубочках, а не в геле. Такие приборы, помимо того, что позволяли увеличить количество образцов, после появления флуоресцентно меченых нуклеотидов, перешли на автоматическую детекцию сигнала. Кроме того, развитие компьютерных технологий: от сетей, которые позволили ученым получать доступ к данным из любой точки, до программ для сравнения и обработки последовательностей.

Накопление последовательностей послужило толчком для развития целой науки — биоинформатики, которая занимается сборкой, обработкой и анализом геномов с использованием математических методов.

Первые итоги и дальнейшее развитие

Так к 2000 году удалось получить представление о последовательности ДНК человека в составе эухроматина — участков, с которых активно идет транскрипция, то есть считывание данных РНК-полимеразой.

Одной только сырой последовательностью букв результат проекта, конечно не ограничивается. После расшифровки число генов в геноме человека пришлось сократить со 100 тысяч до 30 тысяч — это число всего в два раза больше, чем у мухи или червя, написали авторы исторической публикации в Nature.


Как менялись оценки числа генов в геноме человека с 1964 по 2009 годы

Mihaela Pertea and Steven L Salzberg / Genome Biology, 2010

Также ученые узнали, что геном человека содержит очень много повторов и мобильных элементов, подавляющее большинство из которых уже не работает. Кроме того, геном человека очень разнообразен — генетики оценили, что количество однонуклеотидных полиморфизмов в нем (участков, в которых у разных людей может стоять тот или иной нуклеотид) достигает 1,5 миллионов. Это стало ясно в том числе благодаря тому, что в проекте была использована ДНК от большого количества добровольцев, а не от одного человека.

Геном для медицины

За двадцать лет с момента завершения сборки черновой версии генома технологии секвенирования и анализа последовательностей развились настолько, что сегодня узнать последовательность кодирующих участков генома (экзома) обойдется вам уже не в три миллиарда долларов, а лишь несколько сотен.


Изменение стоимости секвенирования генома человека после сентября 2001 года

Генотипирование, то есть определение однонуклеотидных полиморфизмов конкретного человека, уже во многом стало рутиной — в базе данных UK Biobank хранятся данные полногеномного типирования 500 тысяч человек. Кроме генетических данных, записи участников содержат информацию о показателях здоровья, привычках, семейных историях болезни и т.п. Такие наборы данных позволяют исследователям проводить так называемые полногеномные анализы ассоциаций (GWAS — Genome-Wide Association Study), которые позволяют выявить, например, генетическую предрасположенность к определенному заболеванию.

20 лет спустя

Генетический телескоп

Хотя чисто техническая возможность секвенировать геном была показана еще в 70-х годах, когда был расшифрован первый геном вируса, о человеке задумались не сразу. По легенде, эта идея оформилась благодаря биологу Роберту Синшеймеру из Калифорнийского университета в Санта-Крус. Его коллеги-астрономы работали над созданием самого большого (на тот момент) наземного телескопа, и Синшеймер раздумывал над проектом подобного масштаба в биологии.


Шкаф с фрагментом человеческого генома, который стоит в лондонском музее Wellcome Collection. Полностью расшифровка занимает сотни томов, в каждом из которых около тысячи страниц

Russ London / Wikimedia commons


Разворот одного из томов с расшифровкой человеческого генома из лондонского музея Wellcome Collection

Adam Nieman / flickr / CC BY-SA 2.0

В обсуждении участвовал Уолтер Гилберт, который за 10 лет до того предложил свой метод секвенирования ДНК (известный как метод Максама-Гилберта или метод химической деградации ДНК), практически одновременно с Фредериком Сэнгером. Он загорелся идеей создания геномного института и увлек ей первооткрывателя структуры ДНК Джеймса Уотсона и Чарльза Делиси, который возглавлял подразделение здоровья и окружающей среды в Министерстве энергетики США. Последнему геномный проект виделся логичным продолжением исследований влияния радиации на человека. В 1986 году они уже подсчитывали затраты на расшифровку последовательности генома человека.


Одна из автоматизированных линий для подготовки образцов в Институте Уайтхеда в Центре геномных исследований, где секвенировали геном человека

International Human Genome Sequencing Consortium / Nature, 2001

Несмотря на критику и ценник, им удалось продавить как Министерство энергетики, так и Национальные институты здоровья США (NIH). В 1990 году проект стартовал. Панель экспертов настоятельно порекомендовала кроме генома человека заняться также исследованием геномов модельных организмов: кишечной палочки, дрожжей, круглых червей и мыши — чтобы в случае успеха гены человека было с чем сравнивать.

В авторах статьи 2001 года были члены International Human Genome Sequencing Consortium из 20 научных групп США, Великобритании, Германии, Франции, Японии и Китая.


Обложка журнала Time, вышедшего в 26 июня 2000 года. Слева — Крейг Вентер, справа Фрэнсис Коллинз

Почти одновременно со стартом проекта в США, советский академик Александр Баев смог убедить Горбачева выделить значительное финансирование на оборудование лабораторий и создание научных групп, которые могли бы участвовать в международном консорциуме по расшифровке генома человека. По воспоминаниям академика Льва Киселева, который в то время был председателем научного совета российской части программы, отечественный проект начинался очень активно — на его развитие было выделено около 20 миллионов долларов. Однако в 90-х годах государство уже не могло финансировать столь дорогостоящие фундаментальные исследования, и участие в консорциуме, хотя и не закрылось окончательно, было сокращено до минимума.


Фрагмент физической карты 19-й хромосомы, которую читали в Ливерморской национальной лаборатории при участии ИБХ РАН


Обложки журналов Science и Nature, в которых вышли статьи HPG и Celera Genetics

Science, 2001; Nature, 2001

Предпосылки и последствия

В 80-е годы у генетиков уже были инструменты, позволяющие исследовать размер хромосом и расположение на них генов — в основном, при помощи ферментативного расщепления ДНК рестриктазами, разделения фрагментов в геле и гибридизации с радиоактивно меченой последовательностью. Взглянуть на ДНК более пристально удалось благодаря изобретению производительного метода секвенирования англичанином Фредериком Сэнгером, который до того уже придумал способ чтения аминокислотной последовательности белковых молекул.

Определение последовательности ДНК по Сэнгеру, в свою очередь, стало возможным благодаря открытию ДНК-полимеразы — фермента, который в клетке обеспечивает удвоение молекул ДНК за счет комплементарного достраивания цепи на одноцепочечной матрице.


Фрагмент расшифрованной последовательности в геле


Источник: Jennifer Commins et al. / Biological Procedures Online, 2009


Порядок действий при использовании метода секвенирования, который применяли в Celera Genomics

Источник: Jennifer Commins et al. / Biological Procedures Online, 2009

Неудивительно, что многим ведущим генетикам эта задача казалась нерешаемой. Однако по ходу выполнения проекта развитие технологий облегчило ученым работу. Среди технических достижений можно отметить появление автоматического капиллярного секвенатора, где фрагменты разделялись в тонких трубочках, а не в геле. Такие приборы, помимо того, что позволяли увеличить количество образцов, после появления флуоресцентно меченых нуклеотидов, перешли на автоматическую детекцию сигнала. Кроме того, развитие компьютерных технологий: от сетей, которые позволили ученым получать доступ к данным из любой точки, до программ для сравнения и обработки последовательностей.

Накопление последовательностей послужило толчком для развития целой науки — биоинформатики, которая занимается сборкой, обработкой и анализом геномов с использованием математических методов.

Первые итоги и дальнейшее развитие

Так к 2000 году удалось получить представление о последовательности ДНК человека в составе эухроматина — участков, с которых активно идет транскрипция, то есть считывание данных РНК-полимеразой.

Одной только сырой последовательностью букв результат проекта, конечно не ограничивается. После расшифровки число генов в геноме человека пришлось сократить со 100 тысяч до 30 тысяч — это число всего в два раза больше, чем у мухи или червя, написали авторы исторической публикации в Nature.


Как менялись оценки числа генов в геноме человека с 1964 по 2009 годы

Mihaela Pertea and Steven L Salzberg / Genome Biology, 2010

Также ученые узнали, что геном человека содержит очень много повторов и мобильных элементов, подавляющее большинство из которых уже не работает. Кроме того, геном человека очень разнообразен — генетики оценили, что количество однонуклеотидных полиморфизмов в нем (участков, в которых у разных людей может стоять тот или иной нуклеотид) достигает 1,5 миллионов. Это стало ясно в том числе благодаря тому, что в проекте была использована ДНК от большого количества добровольцев, а не от одного человека.

Геном для медицины

За двадцать лет с момента завершения сборки черновой версии генома технологии секвенирования и анализа последовательностей развились настолько, что сегодня узнать последовательность кодирующих участков генома (экзома) обойдется вам уже не в три миллиарда долларов, а лишь несколько сотен.


Изменение стоимости секвенирования генома человека после сентября 2001 года

Генотипирование, то есть определение однонуклеотидных полиморфизмов конкретного человека, уже во многом стало рутиной — в базе данных UK Biobank хранятся данные полногеномного типирования 500 тысяч человек. Кроме генетических данных, записи участников содержат информацию о показателях здоровья, привычках, семейных историях болезни и т.п. Такие наборы данных позволяют исследователям проводить так называемые полногеномные анализы ассоциаций (GWAS — Genome-Wide Association Study), которые позволяют выявить, например, генетическую предрасположенность к определенному заболеванию.

20 лет спустя

Читайте также: