Сеансовые протоколы определяют организацию передачи информации между компьютерами по так называемому

Обновлено: 18.05.2024

5.2. Уровни модели OSI

Физический уровень ( Physical layer ) имеет дело с передачей битов по физическим каналам связи, таким, например, как коаксиальный кабель, витая пара, оптоволо­конный кабель или цифровой территориальный канал. К этому уровню имеют отношение характеристики физических сред передачи данных, такие как полоса пропускания, помехозащищенность, волновое сопротивление и другие. На этом же уровне определяются характеристики электрических сигналов, передающих диск­ретную информацию, например, крутизна фронтов импульсов, уровни напряже­ния или тока передаваемого сигнала, тип кодирования, скорость передачи сигналов. Кроме этого, здесь стандартизуются типы разъемов и назначение каждого контакта. Функции физического уровня реализуются во всех устройствах, подключен­ных к сети. Со стороны компьютера функции физического уровня выполняются сетевым адаптером или последовательным портом.

Канальный уровень ( Data Link layer ). На физическом уровне просто пересылаются биты. При этом не учитывается, что в некоторых сетях, в которых линии связи используются (разделяются) поперемен­но несколькими парами взаимодействующих компьютеров, физическая среда пе­редачи может быть занята. Поэтому одной из задач канального уровня является проверка доступности среды передачи. Другой задачей канального уровня является реализация механизмов обнаружения и коррекции ошибок. Для этого на канальном уровне биты группируются в наборы, называемые кадрами ( frames ). Канальный уровень обеспечивает корректность передачи каждого кадра, помещая специальную последовательность бит в начало и конец каждого кадра, для его выделения, а также вычисляет контрольную сумму, обрабатывая все байты кадра определенным способом и добавляя контрольную сумму к кадру. Когда кадр приходит по сети, получатель снова вычисляет контрольную сумму полученных данных и сравнивает результат с контрольной суммой из кадра. Если они совпада­ют, кадр считается правильным и принимается. Если же контрольные суммы не совпадают, то фиксируется ошибка и этот кадр уничтожается. Канальный уровень может не только обнаруживать ошибки, но и исправлять их за счет повторной передачи поврежденных кадров.

В протоколах канального уровня, используемых в локальных сетях, заложена определенная структура связей между компьютерами и способы их адресации. Хотя канальный уровень и обеспечивает доставку кадра между любыми двумя узлами локальной сети, он это делает только в сети с совершенно определенной топологи­ей связей, именно той топологией, для которой он был разработан.

В локальных сетях протоколы канального уровня используются компьютерами, мостами, коммутаторами и маршрутизаторами . В компьютерах функции канального уровня реализуются совместными усилиями сетевых адаптеров и их драйверов.

Сетевой уровень решает также задачи согласования разных технологий, упрощения адресации в крупных сетях и создания надежных и гибких барьеров на пути нежелательного трафика между сетями.

На сетевом уровне определяются два вида протоколов. Первый вид — сетевые протоколы ( routed protocols ) — реализуют продвижение пакетов через сеть. А также протоколы обмена маршрутной информацией или просто протоколами маршрутизации ( routing protocols ). С помощью этих протоколов маршрутизаторы собирают информацию о топологии межсетевых соединений.

На сетевом уровне работают протоколы еще одного типа, которые отвечают за отображение адреса узла, используемого на сетевом уровне, в локальный адрес сети. Такие протоколы часто называют протоколами разрешения адресов — Address Resolution Protocol , ARP .

Примерами протоколов сетевого уровня являются протокол межсетевого взаимодействия IP стека TCP/IP и протокол межсетевого обмена пакетами IPX стека Novell .

На пути от отправителя к получателю пакеты могут быть искажены или утеряны. Хотя некоторые приложения имеют собственные средства обработки ошибок, существуют и такие, которые предпочитают сразу иметь дело с надежным соединением. Транспортный уровень ( Transport layer ) обеспечивает приложениям или верхним уровням стека — прикладному и сеансовому — передачу данных с той степенью надежности, которая им требуется. Модель OSI определяет пять классов сервиса, предоставляемых транспортным уровнем. Эти виды сервиса отличаются качеством предоставляемых услуг: срочностью, возможностью восстановления прерванной связи, наличием средств мультиплексирования нескольких соединений между различными прикладными протоколами через общий транспортный протокол, а главное — способностью к обнаружению и исправлению ошибок передачи, таких как искажение, потеря и дублирование пакетов.

Как правило, все протоколы, начиная с транспортного уровня и выше, реализу­ются программными средствами конечных узлов сети — компонентами их сетевых операционных систем. В качестве примера транспортных протоколов можно при­вести протоколы TCP и UDP стека TCP/IP и протокол SPX стека Novell .

Сеансовый уровень ( Session layer ) обеспечивает управление диалогом: фиксирует, какая из сторон является активной в настоящий момент, предоставляет средства синхронизации. Последние позволяют вставлять контрольные точки в длинные передачи, чтобы в случае отказа можно было вернуться назад к последней конт­рольной точке, а не начинать все с начала. На практике немногие приложения используют сеансовый уровень, и он редко реализуется в виде отдельных протоко­лов, хотя функции этого уровня часто объединяют с функциями прикладного уровня и реализуют в одном протоколе.

Представительный уровень ( Presentation layer ) имеет дело с формой представле­ния передаваемой по сети информации, не меняя при этом ее содержания. За счет уровня представления информация, передаваемая прикладным уровнем одной си­стемы, всегда понятна прикладному уровню другой системы. С помощью средств данного уровня протоколы прикладных уровней могут преодолеть синтаксические различия в представлении данных или же различия в кодах символов, например, кодов ASCII и EBCDIC. На этом уровне может выполняться шифрование и де­шифрование данных, благодаря которому секретность обмена данными обеспечи­вается сразу для всех прикладных служб. Примером такого протокола является протокол Secure Socket Layer (SSL), который обеспечивает секретный обмен сооб­щениями для протоколов прикладного уровня стека TCP/IP.

Функции всех уровней модели OSI могут быть отнесены к одной из двух групп: либо к функциям, зависящим от конкретной технической реализации сети, либо к функциям, ориентированным на работу с приложениями.

Три нижних уровня — физический, канальный и сетевой — являются сетезависимыми , то есть протоколы этих уровней тесно связаны с технической реализацией сети и используемым коммуникационным оборудованием. Например, переход на оборудование FDDI означает полную смену протоколов физического и канального уровней во всех узлах сети.

Три верхних уровня — прикладной, представительный и сеансовый — ориенти­рованы на приложения и мало зависят от технических особенностей построения сети.

При разработке и использовании сетей для обеспечения совместимости используется ряд стандартов, объединенных в семиуровневую модель открытых систем, принятую во всем мире и определяющую правила взаимодействия компонентов сети на данном уровне (протокол уровня) и правила взаимодействия компонентов различных уровней (межуровневый интерфейс). Международные стандарты в области сетевого информационного обмена нашли отражение в эталонной семиуровневой модели, известной как модель OSI (Open System Intercongtction – связь открытых систем).

Физический уровень реализует физическое управление и относится к физическому каналу связи, например витой паре, по которой передается информация.

Сетевой уровень служит для образования единой транспортной

системы, объединяющей несколько сетей. Выполняет следующие функции: маршрутизацию, фрагментацию, контроль ошибок.

Транспортный уровень обеспечивает приложениям или верхним уровням стека передачу данных с той степенью надежности которая им требуется.

Сеансовый уровень обеспечивает взаимодействие сторон, фиксирует, какая из сторон является активной в настоящий момент и представляет средства синхронизации сеанса.

Уровень представления. Программные средства этого уровня выполняют преобразования данных из внутреннего формата передающего компьютера во внутренний формат компьютера-получателя, не меняя ее содержания. Данный уровень включает функции, относящиеся к используемому набору символов, кодированию данных и способам представления данных на экранах дисплеев или печати. Помимо конвертирования форматов на данном уровне осуществляется сжатие передаваемых данных и их распаковка.


Рис. 1. Модель OSI

Модель OSI представляет собой стандартизированный каркас и общие рекомендации, требования же к конкретным компонентам сетевого программного обеспечения задаются протоколами.

3.3. Протоколы

Протокол является стандартом в области сетевого программного обеспечения и определяет совокупность функциональных и эксплуатационных требований к какому-либо его компоненту, которых придерживаются производители этого компонента. Требования протокола могут отличаться от требований эталонной модели OSI. Международный институт инженеров по электротехнике и радиоэлектронике (IEEE) разработал стандарты для протоколов передачи данных в локальных сетях. Эти стандарты, которые описывают методы доступа к сетевым каналам данных, получили название IEEE 802.

Протоколы сетевого взаимодействия можно классифицировать по степени близости к физической среде передачи данных. Это протоколы:

нижнего уровня, распространяемые на канальный и физический уровни модели OSI;

среднего уровня, распространяемые на сетевой, транспортный и сеансовый уровни OSI;

верхнего уровня, распространяемые на уровень представления и прикладной уровень модели OSI.

При каждой реализации протоколов вышестоящих уровней используются реализации протоколов нижестоящих уровней. Протоколы нижнего уровня OSI соответствуют уровню сетевых аппаратных средств и нижнему уровню сетевого программного обеспечения. Среди наиболее распространенных стандартов данного уровня выделяют Ethernet, FDDI, LLC,X.25, ISDN Протоколы среднего уровня распространяются на сетевой, транспортный и сеансовый уровни эталонной модели. По типу межкомпьютерного обмена эти протоколы можно классифицировать следующим образом:

•сеансовые протоколы (протоколы виртуального соединения);

Сеансовые протоколы определяют организацию передачи информации между компьютерами по так называемому виртуальному каналу в три этапа:

•установление виртуального канала (установка сеанса);

•реализация непосредственного обмена информацией;

•уничтожение виртуального канала (разъединение).

•непосредственный информационный обмен;

Наиболее часто используемыми наборами протоколов среднего уровня являются следующие:

•набор протоколов SPX/IPX, используемый в локальных сетях, функционирующих под управлением сетевой операционной системы NetWare;

•протоколы NetBIOS и NetBEUI, поддерживаемые большинством сетевых операционных систем и используемые только в локальных сетях;

•протоколы TCP/IP, являющиеся стандартом для глобальной сети Internet, используемые в локальных сетях и поддерживаемые большинством сетевых операционных систем.

Протокол SPX (Sequenced Packet Exchange – последовательный обмен пакетами) является сеансовым протоколом и соответствует транспортному и сеансовому уровням эталонной модели. По степени близости к самому низкому уровню эталонной модели протокол SPX находится над протоколом IPX и использует этот протокол.

Важным недостатком протоколов SPX и IPX является несовместимость с протоколами TCP/IP, используемыми в глобальной сети Интернет. Для

подключения локальной сети NetWare к Интернету используется один из

Протоколы NetBIOS и NetBEUI разработаны фирмой IBM и предназначены только для локальных компьютерных сетей.

Протокол NetBIOS (Network Basic Input/Output System – базовая система ввода-вывода) соответствует сетевому, транспортному сеансовому уровням эталонной модели. Реализация данного протокола обеспечивает прикладной интерфейс, используемый для создания сетевых программных приложений.

Протокол NetBEUI (Extended User Interface NetBIOS – расширенный пользовательский интерфейс NetBIOS) является модификацией предыдущего протокола и распространяется только на сетевой и транспортный уровни. Реализации протоколов NetBIOS и NetBEUI обеспечивают решение следующих задач: поддержка имен, поддержка сеансового и дейтаграммного взаимодействия, получение информации о состоянии сети.

Достоинства протоколов NetBIOS и NetBEUI: удобная адресация, высокая производительность, самонастройка и хорошая защита от ошибок, экономное использование оперативной памяти.

Недостатки NetBIOS и NetBEUI связаны с отношением к глобальным сетям: отсутствие поддержки функций маршрутизации и низкая производительность.

Семейство протоколов TCP/IP было разработано для объединения различных компьютерных сетей в одну глобальную сеть, получивщую название Интернет.

Семейство протоколов TCP/IP включает протоколы, относящиеся как к средним, так и другим уровням модели OSI:

• прикладной уровень и уровень представления – протокол передачи файлов (FTP), протоколы электронной почты (SMTP, РОР3, 1МАР4), протоколы удаленного доступа (SLIP, PPP, Telnet), протокол сетевой файловой системы (NPS), протокол управления сетями (SNMP), протокол передачи гипертекста (НТРР) и др.;

• сеансовый и транспортные уровни – протоколы TCP и UDP;

•сетевой уровень – протоколы IP, ICMP, IGMP;

•канальный уровень – протоколы ARP, RARP.


Рис. 1.5. SMB и NetBIOS

Протокол IGMP (Internet Management Protocol) используется для отправки IP-пакетов множеству компьютеров в сети.

Протокол TCP (Transmission Control Protocol) является протоколом сетевого уровня и обеспечивает надежную передачу данных между двумя компьютерами путем организации виртуального канала обмена и использования его для передачи больших массивов данных.

Протокол UDP (User Datagram Protocol) реализует гораздо более простой сервис передачи, обеспечивая надежную доставку данных без установления логического соединения.

Протоколы верхнего уровня соответствуют уровню пользователей и прикладных программ и распространяются на уровень представления и прикладной уровень эталонной модели сетевого взаимодействия. Наиболее распространенными являются следующие высокоуровневые протоколы:

•управления сетями (SNMP);

•сетевой файловой системы (NFS);

•вызова удаленных процедур (RPC);

•повышающие эффективность использования протоколов TCP/IP среднего уровня (DNS, DHSP);

•удаленного доступа к компьютерным ресурсам (SLIP, PPP, Telnet, SSH);

•передачи файлов (FTP);

•электронной почты (SMTP, POP3, IMAP4);

•организации электронных конференций и системы новостер (NNTP).

Данный протокол определяет серии команд, используемых для передачи информации между сетевым) компьютерами.

Протокол DNS (Domain Name System – система доменных имен) предназначен для установления соответствия между смысловыми символьными именами и IP – адресами компьютеров. Протокол DHCP (Dynamic Host Configuration Protocol – протокол динамической конфигурации компьютеров) позволяет автоматически назначать IP-адреса подключаемых к сети компьютеров и изменять их при перемещении из одной подсети в другую.

Простое пособие по сетевой модели OSI для начинающих

Открытая сетевая модель OSI (Open Systems Interconnection model) состоит из семи уровней. Что это за уровни, как устроена модель и какова ее роль при построении сетей — в статье.


Принцип устройства сетевой модели

Сетевая модель OSI имеет семь уровней, иерархически расположенных от большего к меньшему. То есть, самым верхним является седьмой (прикладной), а самым нижним — первый (физический). Модель OSI разрабатывалась еще в 1970-х годах, чтобы описать архитектуру и принципы работы сетей передачи данных. Важно помнить, что данные передаются не только по сети интернет, но и в локальных сетях с помощью проводных или беспроводных соединений.

На седьмом уровне информация представляется в виде данных, на первом — в виде бит. Процесс, когда информация отправляется и переходит из данных в биты, называется инкапсуляцией. Обратный процесс, когда информация, полученная в битах на первом уровне, переходит в данные на седьмом, называется декапсуляцией. На каждом из семи уровней информация представляется в виде блоков данных протокола — PDU (Protocol Data Unit).

Рассмотрим на примере: пользователь 1 отправляет картинку, которая обрабатывается на седьмом уровне в виде данных, данные должны пройти все уровни до самого нижнего (первого), где будут представлены как биты. Этот процесс называется инкапсуляцией. Компьютер пользователя 2 принимает биты, которые должны снова стать данными. Этот обратный процесс называется декапсуляция. Что происходит с информацией на каждом из семи уровней, как и где биты переходят в данные мы разберем в этой статье.

Первый, физический уровень (physical layer, L1)

Каждый уровень имеет свои PDU, представляемые в той форме, которая будет понятна на данном уровне и, возможно, на следующем до преобразования. Работа с чистыми данными происходит только на уровнях с пятого по седьмой.

Устройства физического уровня оперируют битами. Они передаются по проводам (например, через оптоволокно) или без проводов (например, через Bluetooth или IRDA, Wi-Fi, GSM, 4G и так далее).

Второй уровень, канальный (data link layer, L2)

Когда два пользователя находятся в одной сети, состоящей только из двух устройств — это идеальный случай. Но что если этих устройств больше?

У канального уровня есть два подуровня — это MAC и LLC. MAC (Media Access Control, контроль доступа к среде) отвечает за присвоение физических MAC-адресов, а LLC (Logical Link Control, контроль логической связи) занимается проверкой и исправлением данных, управляет их передачей.

На втором уровне OSI работают коммутаторы, их задача — передать сформированные кадры от одного устройства к другому, используя в качестве адресов только физические MAC-адреса.

Третий уровень, сетевой (network layer, L3)

На третьем уровне появляется новое понятие — маршрутизация. Для этой задачи были созданы устройства третьего уровня — маршрутизаторы (их еще называют роутерами). Маршрутизаторы получают MAC-адрес от коммутаторов с предыдущего уровня и занимаются построением маршрута от одного устройства к другому с учетом всех потенциальных неполадок в сети.

На сетевом уровне активно используется протокол ARP (Address Resolution Protocol — протокол определения адреса). С помощью него 64-битные MAC-адреса преобразуются в 32-битные IP-адреса и наоборот, тем самым обеспечивается инкапсуляция и декапсуляция данных.

Четвертый уровень, транспортный (transport layer, L4)

Все семь уровней модели OSI можно условно разделить на две группы:

  • Media layers (уровни среды),
  • Host layers (уровни хоста).

Уровни группы Media Layers (L1, L2, L3) занимаются передачей информации (по кабелю или беспроводной сети), используются сетевыми устройствами, такими как коммутаторы, маршрутизаторы и т.п. Уровни группы Host Layers (L4, L5, L6, L7) используются непосредственно на устройствах, будь то стационарные компьютеры или портативные мобильные устройства.

Четвертый уровень — это посредник между Host Layers и Media Layers, относящийся скорее к первым, чем к последним, его главной задачей является транспортировка пакетов. Естественно, при транспортировке возможны потери, но некоторые типы данных более чувствительны к потерям, чем другие. Например, если в тексте потеряются гласные, то будет сложно понять смысл, а если из видеопотока пропадет пара кадров, то это практически никак не скажется на конечном пользователе. Поэтому, при передаче данных, наиболее чувствительных к потерям на транспортном уровне используется протокол TCP, контролирующий целостность доставленной информации.

Для мультимедийных файлов небольшие потери не так важны, гораздо критичнее будет задержка. Для передачи таких данных, наиболее чувствительных к задержкам, используется протокол UDP, позволяющий организовать связь без установки соединения.

При передаче по протоколу TCP, данные делятся на сегменты. Сегмент — это часть пакета. Когда приходит пакет данных, который превышает пропускную способность сети, пакет делится на сегменты допустимого размера. Сегментация пакетов также требуется в ненадежных сетях, когда существует большая вероятность того, что большой пакет будет потерян или отправлен не тому адресату. При передаче данных по протоколу UDP, пакеты данных делятся уже на датаграммы. Датаграмма (datagram) — это тоже часть пакета, но ее нельзя путать с сегментом.

Первые четыре уровня — специализация сетевых инженеров, но с последними тремя они не так часто сталкиваются, потому что пятым, шестым и седьмым занимаются разработчики.

Пятый уровень, сеансовый (session layer, L5)

Пятый уровень оперирует чистыми данными; помимо пятого, чистые данные используются также на шестом и седьмом уровне. Сеансовый уровень отвечает за поддержку сеанса или сессии связи. Пятый уровень оказывает услугу следующему: управляет взаимодействием между приложениями, открывает возможности синхронизации задач, завершения сеанса, обмена информации.

Службы сеансового уровня зачастую применяются в средах приложений, требующих удаленного вызова процедур, т.е. чтобы запрашивать выполнение действий на удаленных компьютерах или независимых системах на одном устройстве (при наличии нескольких ОС).

Примером работы пятого уровня может служить видеозвонок по сети. Во время видеосвязи необходимо, чтобы два потока данных (аудио и видео) шли синхронно. Когда к разговору двоих человек прибавится третий — получится уже конференция. Задача пятого уровня — сделать так, чтобы собеседники могли понять, кто сейчас говорит.

Шестой уровень, представления данных (presentation layer, L6)

О задачах уровня представления вновь говорит его название. Шестой уровень занимается тем, что представляет данные (которые все еще являются PDU) в понятном человеку и машине виде. Например, когда одно устройство умеет отображать текст только в кодировке ASCII, а другое только в UTF-8, перевод текста из одной кодировки в другую происходит на шестом уровне.

Шестой уровень также занимается представлением картинок (в JPEG, GIF и т.д.), а также видео-аудио (в MPEG, QuickTime). Помимо перечисленного, шестой уровень занимается шифрованием данных, когда при передаче их необходимо защитить.

Седьмой уровень, прикладной (application layer)

Седьмой уровень иногда еще называют уровень приложений, но чтобы не запутаться можно использовать оригинальное название — application layer. Прикладной уровень — это то, с чем взаимодействуют пользователи, своего рода графический интерфейс всей модели OSI, с другими он взаимодействует по минимуму.

Все услуги, получаемые седьмым уровнем от других, используются для доставки данных до пользователя. Протоколам седьмого уровня не требуется обеспечивать маршрутизацию или гарантировать доставку данных, когда об этом уже позаботились предыдущие шесть. Задача седьмого уровня — использовать свои протоколы, чтобы пользователь увидел данные в понятном ему виде.

Критика модели OSI

Семиуровневая модель была принята в качестве стандарта ISO/IEC 7498, действующего по сей день, однако, модель имеет свои недостатки. Среди основных недостатков говорят о неподходящем времени, плохой технологии, поздней имплементации, неудачной политике.

Первый недостаток — это неподходящее время. На разработку модели было потрачено неоправданно большое количество времени, но разработчики не уделили достаточное внимание существующим в то время стандартам. В связи с этим модель обвиняют в том, что она не отражает действительность. В таких утверждениях есть доля истины, ведь уже на момент появления OSI другие компании были больше готовы работать с получившей широкое распространение моделью TCP/IP.

Вторым недостатком называют плохую технологию. Как основной довод в пользу того, что OSI — это плохая технология, приводят распространенность стека TCP/IP. Протоколы OSI часто дублируют другу друга, функции распределены по уровням неравнозначно, а одни и те же задачи могут быть решены на разных уровнях.

Разделение на семь уровней было скорее политическим, чем техническим. При построении сетей в реальности редко используют уровни 5 и 6, а часто можно обойтись только первыми четырьмя. Даже изначальное описание архитектуры в распечатанном виде имеет толщину в один метр.

Кроме того, в отличие от TCP/IP, OSI никогда не ассоциировалась с UNIX. Добиться широкого распространения OSI не получилось потому, что она проектировалась как закрытая модель, продвигаемая Европейскими телекоммуникационными компаниями и правительством США. Стек протоколов TCP/IP изначально был открыт для всех, что позволило ему набрать популярность среди сторонников открытого программного кода.

Даже несмотря на то, что основные проблемы архитектуры OSI были политическими, репутация была запятнана и модель не получила распространения. Тем не менее, в сетевых технологиях, при работе с коммутацией даже сегодня обычно используют модель OSI.

Вывод, роль модели OSI при построении сетей

В статье мы рассмотрели принципы построения сетевой модели OSI. На каждом из семи уровней модели выполняется своя задача. В действительности архитектура OSI сложнее, чем мы описали. Существуют и другие уровни, например, сервисный, который встречается в интеллектуальных или сотовых сетях, или восьмой — так называют самого пользователя.

Как мы упоминали выше, оригинальное описание всех принципов построения сетей в рамках этой модели, если его распечатать, будет иметь толщину в один метр. Но компании активно используют OSI как эталон. Мы перечислили только основную структуру словами, понятными начинающим.

Модель OSI служит инструментом при диагностике сетей. Если в сети что-то не работает, то гораздо проще определить уровень, на котором произошла неполадка, чем пытаться перестроить всю сеть заново.

Зная архитектуру сети, гораздо проще ее строить и диагностировать. Как нельзя построить дом, не зная его архитектуры, так невозможно построить сеть, не зная модели OSI. При проектировании важно учитывать все. Важно учесть взаимодействие каждого уровня с другими, насколько обеспечивается безопасность, шифрование данных внутри сети, какой прирост пользователей выдержит сеть без обрушения, будет ли возможно перенести сеть на другую машину и т.д. Каждый из перечисленных критериев укладывается в функции одного из семи уровней.

В данной статье, мы разберемся, что такое сетевая модель OSI, из каких уровней она состоит, и какие функции выполняет. Итак, предмет разговора является некой моделью взаимодействия эталонов, определяющих последовательность обмена данных, и программ.

p, blockquote 1,0,0,0,0 -->

p, blockquote 2,0,0,0,0 -->

Аббревиатура OSI Open Systems Interconnection, означает модель взаимодействия открытых систем. Для решения задачи совместимости разнообразных систем, организация по стандартизации выпустила в 1983 г. эталон модели OSI. Она описывает структуру открытых систем, их требования, и их взаимодействие.

p, blockquote 3,0,0,0,0 -->

Структура модели OSI

p, blockquote 4,0,0,0,0 -->

Open system – это система, составлена согласно открытым спецификациям, которые доступны каждому, а также соответствуют определенным стандартам. Например, ОС Windows считается open system, потому что она создана на основе открытых спецификаций, которые описывают деятельность интернета, но начальные коды системы закрыты.

p, blockquote 5,0,0,0,0 -->

Достоинство в том, что есть возможность построить сеть из устройств от разных изготовителей, если нужно, заменить ее отдельные компоненты. Можно без проблем, объединить несколько сетей в одну целую.

p, blockquote 6,0,0,0,0 -->

Согласно рассматриваемой нами модели, необходимо, чтобы вычислительные сети состояли из семи уровней. Вследствие того, что модель не описывает протоколы, определяемые отдельными стандартами, она не является сетевой архитектурой.

p, blockquote 7,0,0,0,0 -->

К сожалению, с практической точки зрения, модель взаимодействия открытых систем не применяется. Её особенность заключается в овладении теоретическими вопросами сетевого взаимодействия. Именно поэтому в качестве простого языка для описания построения разных видов сети используется эта модель.

p, blockquote 8,0,0,0,0 -->

Уровни модели OSI

p, blockquote 9,0,0,0,0 -->

Нижние ступени системы с первой по третью, управляют физической доставкой данных по сети, их называют media layers.

p, blockquote 10,0,0,0,0 -->

Остальные, уровни способствуют обеспечению точной доставки данных между компьютерами в сети, их называют хост-машины.

p, blockquote 11,0,0,0,0 -->

Прикладной – это ближайший уровень к юзеру. Его отличие от других в том, что он не предоставляет услуги другим ступеням. Обеспечивает услугами прикладные процессы, которые лежат за пределами масштаба модели, например, передача базы данных, голоса, и другое.

p, blockquote 12,0,0,0,0 -->

Физический уровень (PHYSICAL)

Данный этап устроен сравнительно проще других, ведь кроме единиц и нулей в нем нет других систем измерений, данный уровень не анализирует информацию и именно поэтому является самым нижним из уровней. На нем в основном осуществляется передача информации. Главный параметр загруженности – бит.

p, blockquote 13,0,0,0,0 -->

Основная цель физического уровня представить нуль и единицу в качестве сигналов, передаваемые по среде передачи данных.

p, blockquote 14,0,0,0,0 -->

p, blockquote 15,0,0,0,0 -->

p, blockquote 16,0,0,0,0 -->

В качестве канала передачи информации используются:

  • Кабели: телефонный, коаксиал, витая пара, оптический.
  • Беспроводные технологии, такие как, радиоволны, инфракрасное излучение.
  • Спутниковые КС
  • Беспроводная оптика или лазеры, применяются редко, из-за низкой скорости и большого количества помех.

Очень редко возникают ошибки в оптических кабелях, так как повлиять на распространение света сложно. В медных кабелях, ошибки возникают, но достаточно редко, а в беспроводной среде, ошибки возникают очень часто.

p, blockquote 19,0,0,0,0 -->

Канальный уровень (DATA LINK)

Следующая станция, которую посетит информация, напомнит таможню. А именно IP-адрес будет сравнен на совместимость со средой передачи. Здесь также выявляются и исправляются недочеты системы. Для удобства дальнейших операций, биты группируются в кадры – frame.

p, blockquote 20,0,0,0,0 -->

p, blockquote 21,0,0,0,0 -->

Задачи data link

На канальном уровне выявляются и исправляются ошибки. При обнаружении таковой проводится проверка правильности доставки данных, если неправильно, то кадр отбрасывается.

p, blockquote 22,0,0,0,0 -->

Исправление ошибок, требует применение специальных кодов, которые добавляют избыточную информацию в передаваемые данные.

p, blockquote 23,0,0,0,0 -->

p, blockquote 24,0,0,0,0 -->

Повторная отправка данных, применяется совместно с методом обнаружения ошибок. Если в кадре обнаружена ошибка, он отбрасывается, и отправитель направляет этот кадр заново.

p, blockquote 25,0,0,0,0 -->

Практика показала эффективность следующих методов, если используется надежная среда для передачи данных (проводная) и ошибки возникают редко, то исправлять их лучше на верхнем уровне. Если в КС ошибки происходят часто, то ошибки необходимо исправлять сразу на канальном уровне.

p, blockquote 26,0,0,0,0 -->

Функции данного этапа в компьютере осуществляют сетевые адаптеры и драйверы, подходящие к ним. Через них и происходит непосредственный обмен данными.

p, blockquote 27,0,0,0,0 -->

Некоторые протоколы, используемые на канальном уровне, это HDLC, Ethernet применяющая шинную топологию и другие.

p, blockquote 28,0,0,0,0 -->

Сетевой уровень (NETWORK)

Этап напоминает процесс распределения информации. К примеру, все пользователя делиться на группы, а пакеты данных расходятся в соответствии с IP адресами, состоящими из 32 битов. Именно благодаря работе маршрутизаторов на этой инстанции, устраняются все различия сетей. Это процесс так называемой логической маршрутизации.

p, blockquote 29,0,0,0,0 -->

p, blockquote 30,0,0,0,0 -->

Назначение сетевого уровня

Мы можем передавать информацию от одного компьютера к другому через Ethernet и Wi-Fi, тогда зачем нужен еще один уровень? У технологии канального уровня (КУ) есть две проблемы, во-первых, технологии КУ отличаются друг от друга, во-вторых, есть ограничение по масштабированию.

p, blockquote 31,0,0,0,0 -->

Какие могут быть различия в технологиях канального уровня?

p, blockquote 32,0,0,0,0 -->

p, blockquote 33,0,0,0,0 -->

Может различаться максимальный размер кадра (MTU), например, в изернете 1500, а в вай-фай 2300. Как можно согласовывать такие различия на сетевом уровне?

p, blockquote 34,0,0,0,0 -->

Можно предоставлять разный тип сервиса, например, кадры из Вай-Фай принимаются с отправкой подтверждения, а в Ethernet отправляются без подтверждения.

p, blockquote 35,0,0,0,0 -->

Для того чтобы согласовать разницу адресаций, на сетевом уровне, вводятся глобальные адреса, которые не зависят от адресов конкретных технологий (ARP для TCP/IP) канального уровня.

p, blockquote 36,0,0,0,0 -->

Чтобы передавать данные через составные сети, у которых разный размер передаваемого кадра, используется фрагментация. Рассмотрим пример, первый компьютер передает данные второму, через 4 промежуточные сети, объединенные 3-ми маршрутизаторами. У каждой сети разный MTU.

p, blockquote 37,1,0,0,0 -->

Первый компьютер передает данные второму

p, blockquote 38,0,0,0,0 -->

Компьютер сформировал первый кадр и передал его на маршрутизатор, маршрутизатор проанализировал размер кадра, и понял, что передать полностью его через сеть 2 нельзя, потому что mtu2 у него слишком мал.

p, blockquote 39,0,0,0,0 -->

Компьютер сформировал первый кадр и передал его на маршрутизатор

p, blockquote 40,0,0,0,0 -->

Маршрутизатор разбивает данные на 3 части и передает их отдельно.

p, blockquote 41,0,0,0,0 -->

Маршрутизатор разбивает данные на 3 части

p, blockquote 42,0,0,0,0 -->

Следующий маршрутизатор объединяет данные в один, большой пакет, определяет его размер и сравнивает с mtu сети 3. И видит, что один пакет MTU3 целиком передать нельзя (MTU3 больше, чем MTU2, но меньше, чем MTU1) и маршрутизатор разбивает пакет на 2 части и отправляет следующему маршрутизатору.

p, blockquote 43,0,0,0,0 -->

Последний маршрутизатор объединяет пакет и отправляет получателю

p, blockquote 44,0,0,0,0 -->

Последний маршрутизатор объединяет пакет и отправляет получателю целиком. Фрагментация занимается объединением сетей и это скрыто от отправителя и получателя.

p, blockquote 45,0,0,0,0 -->

Как решается проблема масштабируемости на сетевом уровне?

Работа ведется не с отдельными адресами, как на канальном уровне, а с блоками адресов. Пакеты, для которых не известен путь следования отбрасываются, а не пересылаются обратно на все порты. И существенное отличие от канального, возможность нескольких соединений между устройствами сетевого уровня и все эти соединения будут активными.

p, blockquote 46,0,0,0,0 -->

Задачи сетевого уровня:

  • Объединить сети, построенные разными технологиями;
  • Обеспечить качественное обслуживание;
  • Маршрутизация, поиск пути от отправителя информации к получателю, через промежуточные узлы сети.

Маршрутизация

Поиск пути отправки пакета между сетями через транзитные узлы – маршрутизаторы. Рассмотрим пример выполнения маршрутизации. Схема состоит из 5 маршрутизаторов и двух компьютеров. Как могут передаваться данные от одного компьютера к другому?

p, blockquote 47,0,0,0,0 -->

Передача данных первым путем

p, blockquote 48,0,0,0,0 -->

В следующий раз данные могут быть отправлены другим путем.

p, blockquote 49,0,0,0,0 -->

Передача файла другим путем

p, blockquote 50,0,0,0,0 -->

В случае поломки одного из маршрутизатора, ничего страшного не произойдет, можно найти путь в обход сломанного маршрутизатора.

p, blockquote 51,0,0,0,0 -->

Передача данных продолжится даже в случае поломки одного из маршрутизаторов

p, blockquote 52,0,0,0,0 -->

Протоколы, применяемые на этом этапе: интернет протокол IP; IPX, необходимый для маршрутизации пакетов в сетях и др.

p, blockquote 53,0,0,0,0 -->

Транспортный уровень (TRANSPORT)

Есть следующая задача, на компьютер, который соединен с составной сетью приходит пакет, на компьютере работает много сетевых приложений (веб-браузер, скайп, почта), нам необходимо понять какому приложению нужно передать этот пакет. Взаимодействием сетевых приложений занимается транспортный уровень.

p, blockquote 54,0,0,0,0 -->

Задачи транспортного уровня

Отправка данных между процессами на разных хостах. Обеспечение адресации, нужно знать для какого процесса предназначен тот или другой пакет. Обеспечение надежности передачи информации.

p, blockquote 55,0,0,1,0 -->

Модель взаимодействия open system

Хосты — это устройства где функционируют полезные пользовательские программы и сетевое оборудование, например, коммутаторы, маршрутизаторы.

p, blockquote 56,0,0,0,0 -->

Прямое взаимодействие одного компьютера с транспортным уровнем на другом компьютере

p, blockquote 57,0,0,0,0 -->

Особенностью транспортного уровня является прямое взаимодействие одного компьютера с транспортным уровнем на другом компьютере, на остальных уровнях взаимодействие идет по звеньям цепи.

p, blockquote 58,0,0,0,0 -->

Такой уровень обеспечивает сквозное соединение между двумя взаимодействующими хостами. Данный уровень независим от сети, он позволяет скрыть от разработчиков приложений детали сетевого взаимодействия.

p, blockquote 59,0,0,0,0 -->

Для адресации на транспортном уровне используются порты, это числа от 1 до 65 535. Порты записываются вот так: 192.168.1.3:80 (IP адрес и порт).

p, blockquote 60,0,0,0,0 -->

Особенности транспортного уровня

Обеспечение более высокой надежности, в отличии от сети, которая используется для передачи данных. Применяются надежные каналы связи, ошибки в этих КС происходят редко, следовательно, можно строить надежную сеть, которая будет стоить дешево, а ошибки можно исправлять программно на хостах.

p, blockquote 61,0,0,0,0 -->

p, blockquote 62,0,0,0,0 -->

Сеансовый уровень (SESSION)

Сеансовый (сессия) – это набор сетевых взаимодействий, целенаправленных на решение единственной задачи.

p, blockquote 63,0,0,0,0 -->

p, blockquote 64,0,0,0,0 -->

Сеансовый определяет, какая будет передача информации между 2-мя прикладными процессами: полудуплексной (по очередная передача и прием данных); или дуплексной (одновременная передача и прием информации).

p, blockquote 65,0,0,0,0 -->

Уровень представления данных (PRESENTATION)

Функции – представить данные, передаваемых между прикладными процессами, в необходимой форме.

p, blockquote 66,0,0,0,0 -->

Для описания этого уровня, используют автоматический перевод в сети с различных языков. Например, Вы набираете номер телефона, говорите на русском, сеть автоматом переводит на французский язык, передает информацию в Испанию, там человек поднимает трубку и слышит Ваш вопрос на испанском языке. Это задача, пока не реализована.

p, blockquote 67,0,0,0,0 -->

Для защиты отправляемых данных по сети используется шифрование: secure sockets layer, а также transport layer security, эти технологии позволяют шифровать данные которые отправляются по сети.

p, blockquote 68,0,0,0,0 -->

Значок замок и окончание s

p, blockquote 69,0,0,0,0 -->

p, blockquote 70,0,0,0,0 -->

Прикладной уровень (APPLICATION)

Необходим для взаимодействия между собой сетевых приложений, таких как web, e-mail, skype и тд.

p, blockquote 71,0,0,0,0 -->

По сути, представляет собой комплект спецификаций, позволяющих пользователю осуществлять вход на страницы для поиска нужной ему информации. Проще говоря, задачей application является обеспечение доступа к сетевым службам. Содержимое этого уровня очень разнообразно.

p, blockquote 72,0,0,0,0 -->

Функции application:

  • Решение задач, отправка файлов; управление заданиями и системой;
  • Определение пользователей по их логину, e-mail адресу, паролям, электронным подписям;
  • Запросы на соединение с иными прикладными процессами;

Видео о всех уровнях модели OSI

p, blockquote 73,0,0,0,0 -->

Заключение

Анализ проблем с помощью сетевых моделей OSI поможет быстро найти и устранить их. Недаром работа над проектом программы, способной выявить недочеты имея при этом сложное ступенчатое устройство, велась достаточно долго. Данная модель является в действительности эталоном. Ведь в одно время с ней велись работы по созданию других протоколов. Например, TCP/IP. На сегодняшний день, они довольно часто применяются.

Информационные технологии в профессиональной деятельности

свободное формулирование задачи, но с набором установленных программной средой слов, фраз и синтаксиса языка

стратегия, которая определяет некоторую линию рассуждений интерпретатора, т.е. последовательность выполняемых (предполагаемых к выполнению) циклов (шагов)

стратегия, основные идеи которой выражены явно, но при этом из-за специфики выполнения имеется некоторая вложенность стратегии в другие конструкции системы

Поставьте в соответствие требованию, которому должен удовлетворять любой показатель эффективности, его назначение

требование устанавливает, что значение показателя эффективности всегда можно измерить в некоторой шкале и выполнить над ним допустимые математические преобразования

требование означает, что векторный показатель эффективности должен состоять из небольшого числа частных показателей

требование означает, что, имея оценку показателя эффективности, руководитель должен полностью представлять себе, в какой степени достигается цель операции

установление виртуальной связи между компьютерами по такому же принципу, как при голосовой телефонной связи

если результат операции не является случайной величиной, но зависит от воздействия неопределенных факторов, то в роли показателя эффективности может выступать наихудший результат, который можно достигнуть с учетом влияния этих факторов

если цель операции представляет собой некоторое случайное событие, то показателем эффективности такой операции может служить вероятность соответствующего случайного события

если результат операции - случайная величина, и цель операции заключается в достижении требуемого результата, то в качестве показателя эффективности используется вероятность получения результата не хуже, чем требуемое значение

если результат операции - случайная величина, то показателем эффективности может быть наихудший результат, получаемый с определенной вероятностью

значимость и ценность сети должны определяться набором хранимых в ней знаний, данных и способностью технических средств оперативно их представлять либо обрабатывать

определяет модель характеристик качества программного средства и ее связи с жизненным циклом комплексов программ, которая детализируется во второй и третьей частях стандарта

предназначена для покупателей, поставщиков, разработчиков, сопровождающих, пользователей и менеджеров качества программного средства. Здесь рассмотрена модель качества в использовании

Поставьте в соответствие элементу управляющей части типовой имитационной модели с календарем событий его назначение

предназначен для обмена информацией с базой данных и реализации процедуры расчета показателя эффективности

предназначен для управления процессом появления событий в системе с целью обеспечения необходимой причинно-следственной связи между ними

модели классификации объектов; модели декомпозиции компонентов предметной области; модели потоков; модели данных предметной области; модели классов; модели пользовательского интерфейса; модели логики

спецификации требований к проектируемой системе; конструирование концептуальной модели предметной области; спецификации обработки данных в проектируемой системе; спецификации пользовательского интерфейса системы

схемы первичной классификации; схемы вторичной классификации; схемы детализации; схемы спецификации функциональных возможностей; схемы локальных моделей данных; схемы потоков; диаграммы переходов; схемы спецификации пользовательского интерфейса

проводится содержательный анализ проблемной области, выявляются используемые понятия и их взаимосвязи, определяются методы решения задач

определяются задачи, которые подлежат решению, выявляются цели разработки, определяются эксперты и типы пользователей

выбираются информационные системы и определяются способы представления всех видов знаний, формализуются основные понятия, определяются способы интерпретации знаний, моделируется работа системы

Поставьте в соответствие этапу развития инструментальных средств информационной технологии используемые средства

большие ЭВМ и соответствующее программное обеспечение, электрические пишущие машинки, ксероксы, портативные диктофоны

большие ЭВМ и создаваемые на их базе автоматизированные системы управления и информационно-поисковые системы, оснащенные широким спектром базовых и специализированных программных комплексов

Представление знаний, основанное на ___, построено на использовании выражений вида ЕСЛИ (условие) - ТО (действие)

Представление знаний, основанное на фреймах, использует сеть узлов, связанных отношениями и организованных

Читайте также: