Протоколы компьютерных сетей это сетевые программы

Обновлено: 25.06.2024

ИНФОРМАТИКА- НАУКА, ИЗУЧАЮЩАЯ СПОСОБЫ АВТОМАТИЗИРОВАННОГО СОЗДАНИЯ, ХРАНЕНИЯ, ОБРАБОТКИ, ИСПОЛЬЗОВАНИЯ, ПЕРЕДАЧИ И ЗАЩИТЫ ИНФОРМАЦИИ.

ИНФОРМАЦИЯ – ЭТО НАБОР СИМВОЛОВ, ГРАФИЧЕСКИХ ОБРАЗОВ ИЛИ ЗВУКОВЫХ СИГНАЛОВ, НЕСУЩИХ ОПРЕДЕЛЕННУЮ СМЫСЛОВУЮ НАГРУЗКУ.

ЭЛЕКТРОННО-ВЫЧИСЛИТЕЛЬНАЯ МАШИНА (ЭВМ) ИЛИ КОМПЬЮТЕР (англ. computer- -вычислитель)-УСТРОЙСТВО ДЛЯ АВТОМАТИЗИРОВАННОЙ ОБРАБОТКИ ИНФОРМАЦИИ. Принципиальное отличие использования ЭВМ от всех других способов обработки информации заключается в способности выполнения определенных операций без непосредственного участия человека, но по заранее составленной им программе. Информация в современном мире приравнивается по своему значению для развития общества или страны к важнейшим ресурсам наряду с сырьем и энергией. Еще в 1971 году президент Академии наук США Ф.Хандлер говорил: "Наша экономика основана не на естественных ресурсах, а на умах и применении научного знания".

В развитых странах большинство работающих заняты не в сфере производства, а в той или иной степени занимаются обработкой информации. Поэтому философы называют нашу эпоху постиндустриальной. В 1983 году американский сенатор Г.Харт охарактеризовал этот процесс так: "Мы переходим от экономики, основанной на тяжелой промышленности, к экономике, которая все больше ориентируется на информацию, новейшую технику и технологию, средства связи и услуги.."

2. КРАТКАЯ ИСТОРИЯ РАЗВИТИЯ ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ.

Вся история развития человеческого общества связана с накоплением и обменом информацией (наскальная живопись, письменность, библиотеки, почта, телефон, радио, счеты и механические арифмометры и др.). Коренной перелом в области технологии обработки информации начался после второй мировой войны.

В вычислительных машинах первого поколения основными элементами были электронные лампы. Эти машины занимали громадные залы, весили сотни тонн и расходовали сотни киловатт электроэнергии. Их быстродействие и надежность были низкими, а стоимость достигала 500-700 тысяч долларов.

Появление более мощных и дешевых ЭВМ второго поколения стало возможным благодаря изобретению в 1948 году полупроводниковых устройств- транзисторов. Главный недостаток машин первого и второго поколений заключался в том, что они собирались из большого числа компонент, соединяемых между собой. Точки соединения (пайки) являются самыми ненадежными местами в электронной технике, поэтому эти ЭВМ часто выходили из строя.

В ЭВМ третьего поколения (с середины 60-х годов ХХ века) стали использоваться интегральные микросхемы (чипы)- устройства, содержащие в себе тысячи транзисторов и других элементов, но изготовляемые как единое целое, без сварных или паяных соединений этих элементов между собой. Это привело не только к резкому увеличению надежности ЭВМ, но и к снижению размеров, энергопотребления и стоимости (до 50 тысяч долларов).

История ЭВМ четвертого поколения началась в 1970 году, когда ранее никому не известная американская фирма INTEL создала большую интегральную схему (БИС), содержащую в себе практически всю основную электронику компьютера. Цена одной такой схемы (микропроцессора) составляла всего несколько десятков долларов, что в итоге и привело к снижению цен на ЭВМ до уровня доступных широкому кругу пользователей.

СОВРЕМЕННЫЕ КОМПЬТЕРЫ- ЭТО ЭВМ ЧЕТВЕРТОГО ПОКОЛЕНИЯ, В КОТОРЫХ ИСПОЛЬЗУЮТСЯ БОЛЬШИЕ ИНТЕГРАЛЬНЫЕ СХЕМЫ.

90-ые годы ХХ-го века ознаменовались бурным развитием компьютерных сетей, охватывающих весь мир. Именно к началу 90-ых количество подключенных к ним компьютеров достигло такого большого значения, что объем ресурсов доступных пользователям сетей привел к переходу ЭВМ в новое качество. Компьютеры стали инструментом для принципиально нового способа общения людей через сети, обеспечивающего практически неограниченный доступ к информации, находящейся на огромном множестве компьюторов во всем мире - "глобальной информационной среде обитания".

6.ПРЕДСТАВЛЕНИЕ ИНФОРМАЦИИ В КОМПЬЮТЕРЕ И ЕЕ ОБЪЕМ.

ЭТО СВЯЗАНО С ТЕМ, ЧТО ИНФОРМАЦИЮ, ПРЕДСТАВЛЕННУЮ В ТАКОМ ВИДЕ, ЛЕГКО ТЕХНИЧЕСКИ СМОДЕЛИРОВАТЬ, НАПРИМЕР, В ВИДЕ ЭЛЕКТРИЧЕСКИХ СИГНАЛОВ. Если в какой-то момент времени по проводнику идет ток, то по нему передается единица, если тока нет- ноль. Аналогично, если направление магнитного поля на каком-то участке поверхности магнитного диска одно- на этом участке записан ноль, другое- единица. Если определенный участок поверхности оптического диска отражает лазерный луч- на нем записан ноль, не отражает- единица.

ОБЪЕМ ИНФОРМАЦИИ, НЕОБХОДИМЫЙ ДЛЯ ЗАПОМИНАНИЯ ОДНОГО ИЗ ДВУХ СИМВОЛОВ-0 ИЛИ 1, НАЗЫВАЕТСЯ 1 БИТ (англ. binary digit- двоичная единица). 1 бит- минимально возможный объем информации. Он соответствует промежутку времени, в течение которого по проводнику передается или не передается электрический сигнал, участку поверхности магнитного диска, частицы которого намагничены в том или другом направлении, участку поверхности оптического диска, который отражает или не отражает лазерный луч, одному триггеру, находящемуся в одном из двух возможных состояний.

Итак, если у нас есть один бит, то с его помощью мы можем закодировать один из двух символов- либо 0, либо 1.

Если же есть 2 бита, то из них можно составить один из четырех вариантов кодов: 00 , 01 , 10 , 11 .

Если есть 3 бита- один из восьми: 000 , 001 , 010 , 100 , 110 , 101 , 011 , 111 .

1 бит- 2 варианта,

2 бита- 4 варианта,

3 бита- 8 вариантов;

Продолжая дальше, получим:

4 бита- 16 вариантов,

5 бит- 32 варианта,

6 бит- 64 варианта,

7 бит- 128 вариантов,

8 бит- 256 вариантов,

9 бит- 512 вариантов,

10 бит- 1024 варианта,

N бит - 2 в степени N вариантов.

В обычной жизни нам достаточно 150-160 стандартных символов (больших и маленьких русских и латинских букв, цифр, знаков препинания, арифметических действий и т.п.). Если каждому из них будет соответствовать свой код из нулей и единиц, то 7 бит для этого будет недостаточно (7 бит позволят закодировать только 128 различных символов), поэтому используют 8 бит.

ДЛЯ КОДИРОВАНИЯ ОДНОГО ПРИВЫЧНОГО ЧЕЛОВЕКУ СИМВОЛА В КОМПЬЮТЕРЕ ИСПОЛЬЗУЕТСЯ 8 БИТ, ЧТО ПОЗВОЛЯЕТ ЗАКОДИРОВАТЬ 256 РАЗЛИЧНЫХ СИМВОЛОВ.

СТАНДАРТНЫЙ НАБОР ИЗ 256 СИМВОЛОВ НАЗЫВАЕТСЯ ASCII ( произносится "аски", означает "Американский Стандартный Код для Обмена Информацией"- англ. American Standart Code for Information Interchange).

ОН ВКЛЮЧАЕТ В СЕБЯ БОЛЬШИЕ И МАЛЕНЬКИЕ РУССКИЕ И ЛАТИНСКИЕ БУКВЫ, ЦИФРЫ, ЗНАКИ ПРЕПИНАНИЯ И АРИФМЕТИЧЕСКИХ ДЕЙСТВИЙ И Т.П.

A - 01000001, B - 01000010, C - 01000011, D - 01000100, и т.д.

Таким образом, если человек создает текстовый файл и записывает его на диск, то на самом деле каждый введенный человеком символ хранится в памяти компьютера в виде набора из восьми нулей и единиц. При выводе этого текста на экран или на бумагу специальные схемы - знакогенераторы видеоадаптера (устройства, управляющего работой дисплея) или принтера образуют в соответствии с этими кодами изображения соответствующих символов.

Набор ASCII был разработан в США Американским Национальным Институтом Стандартов (ANSI), но может быть использован и в других странах, поскольку вторая половина из 256 стандартных символов, т.е. 128 символов, могут быть с помощью специальных программ заменены на другие, в частности на символы национального алфавита, в нашем случае - буквы кириллицы. Поэтому, например, передавать по электронной почте за границу тексты, содержащие русские буквы, бессмысленно. В англоязычных странах на экране дисплея вместо русской буквы Ь будет высвечиваться символ английского фунта стерлинга, вместо буквы р - греческая буква альфа, вместо буквы л - одна вторая и т.д.

ОБЪЕМ ИНФОРМАЦИИ, НЕОБХОДИМЫЙ ДЛЯ ЗАПОМИНАНИЯ ОДНОГО СИМВОЛА ASCII НАЗЫВАЕТСЯ 1 БАЙТ.

Очевидно что, поскольку под один стандартный ASCII-символ отводится 8 бит,

Остальные единицы объема информации являются производными от байта:

1 КИЛОБАЙТ = 1024 БАЙТА И СООТВЕТСТВУЕТ ПРИМЕРНО ПОЛОВИНЕ СТРАНИЦЫ ТЕКСТА,

1 МЕГАБАЙТ = 1024 КИЛОБАЙТАМ И СООТВЕТСТВУЕТ ПРИМЕРНО 500 СТРАНИЦАМ ТЕКСТА,

1 ГИГАБАЙТ = 1024 МЕГАБАЙТАМ И СООТВЕТСТВУЕТ ПРИМЕРНО 2 КОМПЛЕКТАМ ЭНЦИКЛОПЕДИИ,

1 ТЕРАБАЙТ = 1024 ГИГАБАЙТАМ И СООТВЕТСТВУЕТ ПРИМЕРНО 2000 КОМПЛЕКТАМ ЭНЦИКЛОПЕДИИ.

Обратите внимание, что в информатике смысл приставок кило- , мега- и других в общепринятом смысле выполняется не точно, а приближенно, поскольку соответствует увеличению не в 1000, а в 1024 раза.

СКОРОСТЬ ПЕРЕДАЧИ ИНФОРМАЦИИ ПО ЛИНИЯМ СВЯЗИ ИЗМЕРЯЕТСЯ В БОДАХ.

1 БОД = 1 БИТ/СЕК.

В частности, если говорят, что пропускная способность какого-то устройства составляет 28 Килобод, то это значит, что с его помощью можно передать по линии связи около 28 тысяч нулей и единиц за одну секунду.

7. СЖАТИЕ ИНФОРМАЦИИ НА ДИСКЕ

ИНФОРМАЦИЮ НА ДИСКЕ МОЖНО ОБРАБОТАТЬ С ПОМОЩЬЮ СПЕЦИАЛЬНЫХ ПРОГРАММ ТАКИМ ОБРАЗОМ, ЧТОБЫ ОНА ЗАНИМАЛА МЕНЬШИЙ ОБЪЕМ.

Существуют различные методы сжатия информации. Некоторые из них ориентированы на сжатие текстовых файлов, другие - графических, и т.д. Однако во всех них используется общая идея, заключающаяся в замене повторяющихся последовательностей бит более короткими кодами. Например, в романе Л.Н.Толстого "Война и мир" несколько миллионов слов, но большинство из них повторяется не один раз, а некоторые- до нескольких тысяч раз. Если все слова пронумеровать, текст можно хранить в виде последовательности чисел - по одному на слово, причем если повторяются слова, то повторяются и числа. Поэтому, такой текст (особенно очень большой, поскольку в нем чаще будут повторяться одни и те же слова) будет занимать меньше места.

Сжатие информации используют, если объем носителя информации недостаточен для хранения требуемого объема информации или информацию надо послать по электронной почте

Программы, используемые при сжатии отдельных файлов называются архиваторами. Эти программы часто позволяют достичь степени сжатия информации в несколько раз.

Аннотация: Ниже мы исследуем такие принципиально важные понятия компьютерных сетей, такие, как IP-адрес, Маска подсети, Шлюз, DNS-сервер и ряд других. В лекции есть ряд практических заданий и упражнений, подкрепленных и дополненных скринкастами.

Сетевые протоколы

Сетевой протокол — набор правил, позволяющий осуществлять обмен данными между составляющими сеть устройствами, например, между двумя сетевыми картами ( рис. 6.1).

Иллюстрация к понятию Сетевой протокол

TCP/IP

Стек протоколов TCP / IP — это набор протоколов, его название происходит от двух наиболее важных протоколов, являющиеся основой связи в сети Интернет . Протокол TCP разбивает передаваемую информацию на порции (пакеты) и нумерует их. С помощью протокола IP все пакеты передаются получателю. Далее с помощью протокола TCP проверяется, все ли пакеты получены. При получении всех порций TCP располагает их в нужном порядке и собирает в единое целое. В сети Интернет используются две версии этого протокола:

IP-адреса стандарта IPv6 имеют длину 128 бит и поэтому в четыре раза длиннее, чем IP-адреса четвертой версии. IP-адреса версии v6 записываются в следующем виде:X:X:X:X:X:X:X:X, где X является шестнадцатеричным числом, состоящим из 4-х знаков(16 бит), а каждое число имеет размер 4 бит. Каждое число располагается в диапазоне от 0 до F. Вот пример IP-адреса шестой версии: 1080:0:0:0:7:800:300C:427A. В подобной записи незначащие нули можно опускать, поэтому фрагмент адреса: 0800: записывается, как 800:.

Для взаимодействия сетевых устройств друг с другом необходимо, чтобы у передающего устройства был IP - и MAC -адреса получателя. Набор протоколов TCP / IP имеет в своем составе специальный протокол, называемый ARP (Address Resolution Protocol — протокол преобразования адресов), который позволяет автоматически получить MAC - адрес по известным IP -адресам

DHCP-протокол

Распределением IP -адресов для подключения к сети Интернет занимаются провайдеры, а в локальных сетях – сисадмины. Назначение IP -адресов узлам сети при большом размере сети представляет для администратора очень утомительную процедуру. Поэтому для автоматизации процесса разработан протокол Dynamic Host Configuration Protocol ( DHCP ) , который освобождает администратора от этих проблем, автоматизируя процесс назначения IP -адресов всем узлам сети.

FTP протокол

FTP протокол передачи файлов со специального файлового сервера на компьютер пользователя. Установив связь с удаленным компьютером, пользователь может скопировать файл с удаленного компьютера на свой или скопировать файл со своего компьютера на удаленный.

POP протокол

POP стандартный протокол получения почтового соединения. Серверы POP обрабатывают входящую почту, а протокол POP предназначен для обработки запросов на получение почты от клиентских почтовых программ.

SMTP протокол

IP адрес по протоколу IPv4

Одной из самых важных тем при рассмотрении TCP / IP является адресация IP . Адрес IP — числовой идентификатор , приписанный каждому компьютеру в сети IP и обозначающий местонахождение в сети устройства, которому он приписан. Адрес IP - это адрес программного, а не аппаратного обеспечения. IP - адрес узла идентифицирует точку доступа модуля IP к сетевому интерфейсу, а не всю машину.

IP - адрес — сетевой (программный) адрес узла в компьютерной сети, построенной по протоколу IP .

Каждый из 4х октет десятичной записи IP адреса может принимать значение в диапазоне от 0 до 255 и в теории такой адрес в десятичной форме записи может быть в диапазоне от 0.0.0.0 до 255.255.255.255. IP адрес - двоичное число, но для человека вместо записи в 32 бит 11000000.10101000.00000000.00000001 удобнее запись в 4 байта вида 192.168.0.1.

Задание 1. Определить IP адрес вашего ПК

Узнать свой собственный IP адрес вы можете, если запустите в ОС Windows XP на выполнение команду Пуск – Программы – Стандартные – Командная Строка и наберете в ней ipconfig ( рис. 6.2).

IP адрес вашего ПК в десятичной системе счисления

Ту же команду можно выполнить в командной строке Windows 7 ( рис. 6.3).

Здесь мы видим IP в двух версиях: IPv4 и IPv6

Задание 2 (скринкаст). Перевод чисел из двоичной системы в десятичную и наоборот

При работе с IP -адресами может возникнуть необходимость перевода двоичных чисел в десятичные и наоборот. Это можно сделать, например, так, как учат в школе:

101101102 = (1•2 7 )+(0•2 6 )+(1•2 5 )+(1•2 4 )+(0•2 3 )+(1•2 2 )+(1•2 1 )+(0•2 0 ) = 128+32+16+4+2 = 18210 Но, удобнее это делать на Windows -калькуляторе. Выполните в Windows -7 команду Пуск-Программы-Стандартные-Калькулятор, потом Вид-Программист ( рис. 6.4 и 5).

Понимание работы сетей на базовом уровне имеет очень важное значение для каждого администратора сервера или веб-мастера. Это необходимо для правильной настройки ваших сервисов в сети, а также легкого обнаружения возможных проблем и решения неполадок.

В этой статье мы рассмотрим общие концепции сетей интернета, обсудим основную терминологию, самые распространенные протоколы, а также характеристики и предназначение каждого из уровней сетей. Здесь собрана только теория, но она будет полезна начинающим администраторам и всем интересующимся.

Основные сетевые термины

Перед тем как обсуждать основы сети интернет, нам нужно разобраться с некоторыми общими терминами, которые часто используются специалистами и встречаются в документации:

Вы можете найти намного больше терминов, но здесь мы перечислили все самые основные, которые будут встречаться чаще всего.

Уровни сетей и модель OSI

Обычно, сети обсуждаются в горизонтальной плоскости, рассматриваются протоколы сети интернет верхнего уровня и приложения. Но для установки соединений между двумя компьютерами используется множество вертикальных слоев и уровней абстракции. Это означает, что существует несколько протоколов, которые работают друг поверх друга для реализации сетевого соединения. Каждый следующий, более высокий слой абстрагирует передаваемые данные и делает их проще для восприятия следующим слоем, и в конечном итоге приложением.

Существует семь уровней или слоев работы сетей. Нижние уровни будут отличаться в зависимости от используемого вами оборудования, но данные будут передаваться одни и те же и будут иметь один и тот же вид. На другую машину данные всегда передаются на самом низком уровне. На другом компьютере, данные проходят все слои в обратном порядке. На каждом из слоев к данным добавляется своя информация, которая поможет понять что делать с этим пакетом на удаленном компьютере.

Модель OSI

Так сложилось исторически, что когда дело доходит до уровней работы сетей, используется модель OSI или Open Systems Interconnect. Она выделяет семь уровней:

  • Уровень приложений - самый верхний уровень, представляет работу пользователя и приложений с сетью Пользователи просто передают данные и не задумываются о том, как они будут передаваться;
  • Уровень представления - данные преобразуются в более низкоуровневый формат, чтобы быть такими, какими их ожидают получить программы;
  • Уровень сессии - на этом уровне обрабатываются соединения между удаленным компьютерами, которые будут передавать данные;
  • Транспортный уровень - на этом уровне организовывается надежная передача данных между компьютерами, а также проверка получения обоими устройствами;
  • Сетевой уровень - используется для управления маршрутизацией данных в сети пока они не достигнут целевого узла. На этом уровне пакеты могут быть разбиты на более мелкие части, которые будут собраны получателем;
  • Уровень соединения - отвечает за способ установки соединения между компьютерами и поддержания его надежности с помощью существующих физических устройств и оборудования;
  • Физический уровень - отвечает за обработку данных физическими устройствами, включает в себя программное обеспечение, которое управляет соединением на физическом уровне, например, Ehternet или Wifi.

Как видите, перед тем, как данные попадут к аппаратному обеспечению им нужно пройти множество слоев.

Модель протоколов TCP/IP

Модель TCP/IP, еще известная как набор основных протоколов интернета, позволяет представить себе уровни работы сети более просто. Здесь есть только четыре уровня и они повторяют уровни OSI:

  • Приложения - в этой модели уровень приложений отвечает за соединение и передачу данными между пользователям. Приложения могут быть в удаленных системах, но они работают как будто бы находятся в локальной системе;
  • Транспорт - транспортный уровень отвечает за связь между процессами, здесь используются порты для определения какому приложению нужно передать данные и какой протокол использовать;
  • Интернет - на этом уровне данные передаются от узла к узлу по сети интернет. Здесь известны конечные точки соединения, но не реализуется непосредственная связь. Также на этом уровне определяются IP адреса;
  • Соединение - этот уровень реализует соединение на физическом уровне, что позволяет устройствам передавать между собой данные не зависимо от того, какие технологии используются.

Эта модель менее абстрактная, но мне она больше нравиться и ее проще понять, поскольку она привязана к техническим операциям, выполняемым программами. С помощью каждой из этих моделей можно предположить как на самом деле работает сеть. Фактически, есть данные, которые перед тем, как будут переданы, упаковываются с помощью нескольких протоколов, передаются через сеть через несколько узлов, а затем распаковываются в обратном порядке получателем. Конечные приложения могут и не знать что данные прошли через сеть, для них все может выглядеть как будто обмен осуществлялся на локальной машине.

Основные протоколы интернета

Как я уже сказал. в основе работы сети лежит использование нескольких протоколов, которые работают один поверх другого. Давайте рассмотрим основные сетевые протоколы интернет, которые вам будут часто встречаться, и попытаемся понять разницу между ними.

Есть еще очень много других протоколов, но мы рассмотрели только сетевые протоколы, которые больше всего важны. Это даст вам общие понятия того, как работает сеть и интернет в целом.

Выводы

В этой статье мы рассмотрели основы сетей и протоколов, которые используются для организации их работы. Конечно, этого совсем недостаточно, чтобы понять все, но теперь у вас есть определенная база и вы знаете как различные компоненты взаимодействуют друг с другом. Это поможет вам понимать другие статьи и документацию. Если вас серьезно заинтересовали основы сети интернет, то тут не хватит нескольких статей. Вам нужна книга. Обратите внимание на Камер Д. Сети TCP/IP. Принципы, протоколы и структура. В свое время я ее прочитал и мне очень понравилось.

На завершение видео про модель OSI:

Основы компьютерных сетей


Краткий курс — основы компьютерных сетей. В этом материале я расскажу (сжато) об основах компьютерных сетей. Статья предназначена для начинающих, а так же будет полезна школьникам старших классов и студентам. Начнем с базовых определений.

Сеть – совокупность систем связи и систем обработки информации, которая может использоваться несколькими пользователями.

Компьютерная сеть – сеть, в узлах которой содержатся компьютеры и оборудование коммуникации данных.

Вычислительная сеть – соединенная каналами связи система обработки данных, ориентированная на конкретного пользователя.

Компьютерная сеть — представляет собой систему распределенной обработки информации. Что тут важно. Важно то, что в распределенной системе не важно откуда и с какого устройства вы заходите. Вы можете войти в сеть с любого устройства (персональный компьютер, ноутбук, планшетный компьютер, телефон) из любой точки мира где есть интернет.

Краткая история развития компьютерных сетей

Компьютерные сети появились в результате развития телекоммуникационных технологий и компьютерной техники. То есть появились компьютеры. Они развивались. Были телекоммуникационные системы, телеграф, телефон, то есть связь. И вот люди думали, хорошо было бы если бы компьютеры могли обмениваться информацией между собой. Эта идея стала основополагающей идеей благодаря которой появились компьютерные сети.

50-е годы: мейнфреймы

50-е годы: мейнфреймы

Начало 60-х годов: многотерминальные системы

В дальнейшем к одному мейнфрейму стали подключать несколько устройств ввода-вывода, появился прообраз нынешних терминальных систем да и сетей в целом.

Начало 60-х годов: многотерминальные системы

70-е годы: первые компьютерные сети

?0-е годы, время холодной войны. СССР и США сидели возле своих ракет и думали кто же атакует (или не атакует) первым. Центры управления ракетами США располагались в разных местах удаленных друг от друга. Если в одном центре производится запуск ракет, после которого в центр попадает ракета врага, то вся информация в этом центре — утеряна. Управление перспективных исследовательских проектов Министерства обороны США (Defense Advanced Research Projects Agency (DARPA)) ставит перед учеными задачу — разработать технологию которая позволяла бы передавать информацию из одного стратегического центра в другой на случай его уничтожения.

Arpanet

В 1969 году появляется ARPANET (от англ. Advanced Research Projects Agency Network) — первая компьютерная сеть созданная на основе протокола IP который используется и по сей день. За 11 лет ARPANET развивается до сети способной обеспечить связь между стратегическими объектами вооруженных сил США.

Середина 70-х годов: большие интегральные схемы

Локальная сеть (Local Area Network, LAN) – объединение компьютеров, сосредоточенных на небольшой территории. В общем случае локальная сеть представляет собой коммуникационную систему, принадлежащую
одной организации.

Сетевая технология – согласованный набор программных и аппаратных средств (драйверов, сетевых адаптеров, кабелей и разъемов), а также механизмов передачи данных по линиям связи, достаточный для построения вычислительной сети.

В период с 80-х до начала 90-х годов появились и прочно вошли в нашу жизнь:

  1. Ethernet.
  2. Token Ring.
  3. Arcnet.
  4. FDDI (Fiber Distributed Data Interface) — волоконнооптический интерфейс передачи данных.
  5. TCP/IP используется в ARPANET.
  6. Ethernet становится лидером среди сетевых технологий.
  7. В 1991 году появился интернет World Wide Web.

Общие принципы построения сетей

Со временем основной целью компьютерных развития сетей (помимо передачи информации) стала цель распределенного использования информационных ресурсов:

  1. Периферийных устройств: принтеры, сканеры и т. д.
  2. Данных хранящихся в оперативной памяти устройств.
  3. Вычислительных мощностей.

Достичь эту цель помогали сетевые интерфейсы. Сетевые интерфейсы это определенная логическая и/или физическая граница между взаимодействующими независимыми объектами.

Сетевые интерфейсы разделяются на:

  • Физические интерфейсы (порты).
  • Логические интерфейсы (протоколы).

Из определения обычно ничего не ясно. Порт и порт, а что порт?

Начнем с того что порт это цифра. Например 21, 25, 80.

Протокол

Протокол, например TCP/IP это адрес узла (компьютера) с указанием порта и передаваемых данных. Например что бы передать информацию по протоколу TCP/IP нужно указать следующие данные:

Адрес отправителя (Source address):
IP: 82.146.49.11
Port: 2049
Адрес получателя (Destination address):
IP: 195.34.32.111
Port: 53
Данные пакета:

Благодаря этим данным информация будет передана на нужный узел.

Пара клиент—сервер

Начнем с определений.

Проще говоря Сервер — это компьютер на котором установлена программа, или принтер. Клиент — это компьютер который подключается к программе, работает с ней и распечатывает какие-либо результаты, например.

При этом программа может быть установлена на Клиенте, а база данных программы на Сервере.

Топология физических сетей

Под топологией сети понимается конфигурация графа, вершинам которого соответствуют конечные узлы сети (например, компьютеры) и коммуникационной оборудование (например, маршрутизаторы), а ребрам – физические или информационные связи между вершинами.

  • Полносвязная (а).
  • Ячеистая (б).
  • Кольцо (в).
  • Звезда (г).
  • Дерево (д).
  • Шина (е).

Топология сетей

Основных топологий сети 6. В целом тут все просто. На сегодняшний день наиболее распространенная топология — Дерево.

Адресация узлов сети

Множество всех адресов, которые являются допустимыми в рамках некоторой схемы адресации, называется адресным пространством. Адресное пространство может
иметь плоскую (линейную) организацию или иерархическую организацию.

Для преобразования адресов из одного вида в другой используются специальные вспомогательные протоколы, которые называют протоколами разрешения адресов.

Коммутация

Соединение конечных узлов через сеть транзитных узлов называют коммутацией. Последовательность узлов, лежащих на пути от отправителя к получателю, образует маршрут.

Коммутация

Обобщенные задачи коммутации

  1. Определение информационных потоков, для которых требуется прокладывать маршруты.
  2. Маршрутизация потоков.
  3. Продвижение потоков, то есть распознавание потоков и их локальная коммутация на каждом транзитном узле.
  4. Мультиплексирование и демультиплексирование потоков.

Уровни сетевой модели OSI и уровни TCP/IP

(OSI) Open System Interconnection — многоуровневая модель взаимодействия открытых систем, состоящая из семи уровней. Каждый из семи уровней предназначен для выполнения одного из этапов связи.

Для упрощения структуры большинство сетей организуются в наборы уровней, каждый последующий возводится над предыдущим.

Целью каждого уровня является предоставление неких сервисов для вышестоящих уровней. При этом от них скрываются детали реализации предоставляемого сервиса.

Уровни сетевой модели OSI

Протоколы, реализующие модель OSI никогда не применялись на практике, но имена и номера уровней используются по сей день.

  1. Физический.
  2. Канальный.
  3. Сетевой.
  4. Транспортный.
  5. Сеансовый.
  6. Представления.
  7. Прикладной.

Для лучшего понимания приведу пример. Вы открываете страницу сайта в интернете. Что происходит?

Уровни OSI — краткий обзор

Физический уровень. Если коротко и просто, то на физическом уровне данные передаются в виде сигналов. Если передается число 1, то задача уровня передать число 1, если 0, то передать 0. Простейшее сравнение — связать два пластиковых стаканчика ниткой и говорить в них. Нитка передает вибрацию физически.

Канальный уровень. Канальный уровень это технология каким образом будут связаны узлы (передающий и принимающий), тут вспоминает топологию сетей: кольцо, шина, дерево. Данный уровень определяет порядок взаимодействия между большим количеством узлов.

Сетевой уровень. Объединяет несколько сетей канального уровня в одну сеть. Есть, например, у нас кольцо, дерево и шина, задача сетевого уровня объединить их в одну сеть, а именно — ввести общую адресацию. На этом уровне определяются правила передачи информации:

  1. Сетевые протоколы (IPv4 и IPv6).
  2. Протоколы маршрутизации и построения маршрутов.

Сеансовый уровень. Отвечает за управление сеансами связи. Производит отслеживание: кто, в какой момент и куда передает информацию. На этом уровне происходит синхронизация передачи данных.

Прикладной уровень. Осуществляет взаимодействие приложения (например браузера) с сетью.

Уровни TCP/IP

Набор протоколов TSP/IP основан на собственной модели, которая базируется на модели OSI.

  • Прикладной, представления, сеансовый = Прикладной.
  • Транспортный = Транспортный.
  • Сетевой = Интернет.
  • Канальный, физический = Сетевой интерфейс.

Соответствие TCP/IP - OSI

Уровень сетевого интерфейса

Уровень сетевого интерфейса (называют уровнем 2 или канальным уровнем) описывает стандартный метод связи между устройствами которые находятся в одном сегменте сети.

Сегмент сети — часть сети состоящая из сетевых интерфейсов, отделенных только кабелями, коммутаторами, концентраторами и беспроводными точками доступа.

Этот уровень предназначен для связи расположенных недалеко сетевых интерфейсов, которые определяются по фиксированным аппаратным адресам (например MAC-адресам).

Уровень сетевого интерфейса так же определяет физические требования для обмена сигналами интерфейсов, кабелей, концентраторов, коммутаторов и точек доступа. Это подмножество называют физическим уровнем (OSI), или уровнем 1.

Например, интерфейсы первого уровня это Ethernet, Token Ring, Point-to-Point Protocol (PPP) и Fiber Distributed Data Interface (FDDI).

Немного о Ethernet на примере кадра web-страницы

Пакеты Ethernet называют кадрами. Первая строка кадра состоит из слова Frame. Эта строка содержит общую информацию о кадре.

Далее в кадре располагается заголовок — Ethernet.

Таким образом цель кадра — запрос содержимого веб-страницы которая находится на удаленном сервере.

Пример кадра

В полном заголовке Ethernet есть такие значения как DestinationAddress и SourceAddress которые содержат MAC-адреса сетевых интерфейсов.

Поле EthernetType указывает на следующий протокол более высокого уровня в кадре (IPv4).

Коммутаторы считывают адреса устройств локальной сети и ограничивают распространение сетевого трафика только этими адресами. Поэтому коммутаторы работают на уровне 2.

Уровень Интернета

Уровень интернета называют сетевым уровнем или уровнем 3. Он описывает схему адресации которая позволяет взаимодействовать устройствам в разных сетевых сегментах.

Если адрес в пакете относится к локальной сети или является широковещательным адресом в локальной сети, то по умолчанию такой пакет просто отбрасывается. Поэтому говорят, что маршрутизаторы блокируют широковещание.

Стек TCP/IP реализован корпорацией Microsoft ну уровне интернета (3). Изначально на этом уровне использовался только один протокол IPv4, позже появился протокол IPv6.

Протокол версии 4 отвечает за адресацию и маршрутизацию пакетов между узлами в десятках сегментах сети. IPv4 использует 32 разрядные адреса. 32 разрядные адреса имеют довольно ограниченное пространство, в связи с этим возникает дефицит адресов.

Протокол версии 6 использует 128 разрядные адреса. Поэтому он может определить намного больше адресов. В интернете не все маршрутизаторы поддерживают IPv6. Для поддержки IPv6 в интернете используются туннельные протоколы.

В Windows по умолчанию включены обе версии протоколов.

Транспортный уровень

Транспортный уровень модели TCP/IP представляет метод отправки и получения данных устройствами. Так же он создает отметку о предназначении данных для определенного приложения. В TCP/IP входят два протокола транспортного уровня:

  1. Протокол TCP. Протокол принимает данные у приложения и обрабатывает их как поток байт.Байты группируются, нумеруются и доставляются на сетевой хост. Получатель подтверждает получение этих данных. Если подтверждение не получено, то отправитель отправляет данные заново.
  2. Протокол UDP.Этот протокол не предусматривает гарантию и подтверждение доставки данных. Если вам необходимо надежное подключение, то стоит использовать протокол TCP.

Прикладной уровень

Анатолий Бузов

Обучаю HTML, CSS, PHP. Создаю и продвигаю сайты, скрипты и программы. Занимаюсь информационной безопасностью. Рассмотрю различные виды сотрудничества.

Читайте также: