Организация виртуальных каналов информационного обмена протокол х 25

Обновлено: 16.06.2024

Презентация на тему: " X.25 Лекция 8. Разработана в 1976 г. Изначально предназначена только для передачи эластичного трафика. Разрабатывалась для плохих каналов, т.е. скорости." — Транскрипт:

2 Разработана в 1976 г. Изначально предназначена только для передачи эластичного трафика. Разрабатывалась для плохих каналов, т.е. скорости низкие, но высокая надежность. Использует аппарат виртуальных каналов. Имеет свою адресацию. Модель OSI разрабатывалась исходя из Х.25 В настоящее время используется в банковских сетях. Общие сведения

3 Модель Х.25 сетевой канальный физический Х.25 – адресация, маршрутизация, сборка/ разборка пакетов. Х.21 – стандарты физического подключения, в т. ч. Характеристики передаваемых сигналов. LAP-B (HDLC) – способ передачи данных между рабочей станцией и коммутатором. Идея: сеть построена на коммутаторах пакетов. Х.25 адаптирован для применения в сетях общего пользования. Каждая пользовательская рабочая станция подключается не к сети, а к коммутатору. Особенность – обеспечение надежности осуществляется на каждом уровне модели. Канальный уровень – контрольная сумма, подтверждение о доставке. Сетевой уровень – обнаружение ошибок и восстановление пакетов (механизм контрольных сумм, тайм-аутов). Транспортный уровень – обеспе- чение надежности сквозного соединения, квитирование.

4 Адресация в Х.25 ХХХХХХХХХХХХХХ Код страны и номер провайдера. 4 цифры Номер пользователя. 10 или 11 цифр Логический адрес назначается для каждого соединения. Адрес задается в десятичных цифрах.

5 Формат пакета Х.25 (сетевой уровень) Идентификатор канала группы логич.каналов логического канала Идентификатор пакета Данные резервК.С бит Вся полоса пропускания делится поровну между активными виртуальными каналами (VC). Виртуальные каналы разделяются на два типа: -PVC – постоянные виртуальные каналы; -SVC – временные виртуальные каналы. Несколько каналов образуют группу. Максимальное число VC 4092 (8 бит для логич. канала + 4 бита для группы логич. каналов. логического канала однозначно определяет виртуальный порт для данного пользовательского процесса.

6 Формат кадра Х.25 (канальный уровень) флаг адресуправлениеданные контр. сумма флаг Задает тип кадра: -информационный (с пользовательской информацией) -управляющий (аналог установления соединения) -ненумерованный (контроль за состоянием соединения) Комбинация Расстояние между флагами не менее 32 бит – обеспечивает контроль за ошибками.

7 LAP-B – Link Access Procedure Balanced. Протокол семейства HDLC. Ориентирован на низкоскоростные каналы. Обеспечивает контроль за ошибками за счет перезапроса с предыдущего узла. перезапрос Т.о., перезапросы приводят к необходимости дополнительного буфера на промежуточных узлах и к существенному понижению скорости. Следовательно, для построения больших сетей Х.25 непригодна.

8 Виртуальные каналы На канальном уровне пакеты всех VC собираются в один общий поток Особенности протокола LAP-B: -дуплекс, полудуплекс; -циклическая нумерация передаваемых блоков данных; -скользящее окно; -решающая обратная связь; -избыточный циклический код в режиме обнаружения ошибок. Образующий полином:

9 Другие протоколы и рекомендации Х.25 Х.3, Х.28, Х.29 – рекомендации, определяющие различные типы терминалов. Управляют процессом сборки/разборки пакетов. Х.21 – протокол физического уровня. Симметричный. Поддерживает V.24.

10 Frame Relay Лекция 8

11 Основная особенность – отсутствие явного управления потоками (сигнализация переносится в кадр данных). Оперирует кадрами данных, каждый из которых содержит адреса получателя, отправителя и управляющей информацией. Работает на канальном (протокол LAP-F) и физическом (поддержка рекомендаций серии V, Х.21, T1/E1, BRI/PRI) уровнях. Использует статистическое мультиплексирование Организует постоянные и проключаемые виртуальные каналы (PVC и SVC)

12 Базовые возможности: Поддержка дуплекса Скорость для абонентов 2 Мбит/с, для транспортных сегментов до 155 Мбит/с Сохранение порядка кадров Определение ошибок передачи. Перезапрос производится с узла-получателя. Прозрачность передачи данных (т.е. модификация только адресного поля и поля контрольной суммы при сохранении структуры кадра).

13 Структура кадра ДанныеЗаголовок Контр. сумма флаг Комбинация Для избежания ложного срабатывания на передаче используется bit-staffing – Вставка 0 после каждых пяти 1. Комбинация из пятнадцати или более 1 означает состояние покоя канала Размер поля данных от 1 до 4096 байт Рассчитывается по всему кадру. Занимает 1 байт

14 Адрес FR Структура заголовка Резерв 1 бит + адрес FR FECNBECN Адрес в пределах FR и расширение адреса 10 бит + 1 бит Уведомление о перегрузке, 1 бит Разрешение сброса, 1 бит

16 ФрагментацияФрагментация: разбиение больших пакетов эластичного трафика на части и их мультиплексирование с пакетами трафика реального времени. Механизмы: WFQ, организация раздельных очередей для каждого типа трафика.

17 Механизмы выравнивания трафикаМеханизмы выравнивания трафика: позволяют выравнивать трафик в соответствии с CIR (скоростью, с которой кадры поступают на обслуживание) на каждом виртуальном канале. Механизмы: –корзина маркеров, –дырявое ведро, –методы обслуживания очередей (например, WFQ)

18 Корзина маркеров Дозирование и выравнивание трафика. Применяется во всех пакетных сетях. Имеет две модификации: -стандартная: не поддерживает резкого увеличения всплеска, допускает потери пакетов (отбрасывание хвоста); -с возможностью резкого увеличения всплеска: количество маркеров может изменяться при увеличении интенсивности трафика

Содержание

Временная диаграмма последовательности обмена кадрами

Выполнение функции безошибочного обмена информационными кадрами обеспечивается подмножеством высокоуровневого протокола управления каналом HDLC (High-level Data Link Control) - процедурой сбалансированного доступа LAP-B (Link Access Protocol-Balanced). Этот протокол обеспечивает режим работы, в котором оба взаимодействующих в соединении узла равноправны.

Для описания алгоритма работы канального уровня сети Х.25 используются примитивы. Примитивами являются блоки данных определенного вида, которые передаются между уровнями системы для вызова различных процедур. Примитивы определяются согласно рекомендации ITU-T Х.210. На рис. 1 представлен обмен примитивами между уровнями модели OSI. Показаны четыре типа примитивов – запрос, индикация, ответ, подтверждение.


В некоторых случаях достаточно двух типов примитивов (запрос, подтверждение).

На рис. 2 приведена временная диаграмма последовательности обмена кадрами при установлении соединения, передача одного информационного кадра и разъединение соединения. Приведём эту последовательность.


Рис. 2. Временная диаграмма последовательности обмена кадрами при установлении соединения, передаче информационного кадра и разъединении канального соединения

Как видно из рис. 2, далее показан обмен примитивами и кадрами (DISC и UA) фазы завершения работы соединения.

Формат кадра

На рис. 3 приведен формат информационного кадра Х.25. Этот формат включает заголовок кадра З2, концевик кадра К2 и пакет данных третьего уровня. Кадр обрамляется флагами (F). Основным полем заголовка З2 является поле управления потоком, в котором основными характеристиками являются тип кадра и номера передаваемого и принимаемого информационного кадра: соответственно – N(S) и N(R).

Управление потоком в канале (например, между смежными узлами в сети X.25) состоит в следущем. Передаваемый кадр сохраняется в буфере передающего узла, ожидая приёма квитанции о правильном приёме кадра узла получателя. Если кадр был искажен в канале, то передача должна быть повторена.


Убедимся в необходимости применения при службе передачи данных схем обнаружения ошибок в принимаемых кадрах. Для этого определим вероятность появления таких искаженных кадров. Обозначим вероятность единичного ошибочного бита через Рв – эта характеристика канала, именуемая также частотой ошибочных битов (bit error rate – BER). При использовании каналов в сети Х.25 эта величина может составлять Рв=0,0001. Если считать, что в канале возникают одиночные ошибки, статически независимые, то при длине кадра Х.25 порядка L=128 байт вероятность безошибочного приема кадра P = ( 1 − P B ) ≈ ( 0 , 9999 ) 1024 ≈ 0 , 9 )\approx (0,9999)^\approx 0,9> , т.е. каждый десятый кадр искажен на приеме.

Полученный результат свидетельствует о необходимости применения схем обнаружения ошибок. Работа всех методов обнаружения ошибок основывается на использовании помехоустойчивого кодирования. На передающей стороне заголовок З2 и информационная часть, которая присутствует только в информационных кадрах, представляется как последовательность из k бит, которую требуется защитить от ошибок. К данной последовательности добавляется контрольно-проверочная комбинация КПК, которая вычисляется по определенному алгоритму как функция k битов передаваемого кадра. В результате формируется кодовая комбинация, имеющая длину n бит и включающая контрольно-проверочную комбинацию (n-k) бит (рис. 4). На приеме из кадра выделяется КПК. На основании принятых k бит приемник вычисляет КПК и сверяет результат вычисления с принятой КПК. Если принятая и вычисленная КПК не совпадают, кадр считается искаженным и аннулируется. В сети Х.25 используется один из наиболее широко используемых методов обнаружения ошибок – с помощью циклического избыточного кода CRC (Cyclic redundancy check). В сети X.25 n-k = 16 бит.


В разделе 4 приводится описание кода CRC тремя способами: с помощью арифметики по модулю 2, с использованием полинома, аппаратная реализация. Циклический код используется не только в сетях X.25, но и в IP - сетях, в беспроводных сетях стандарта GSM и др.

Восстановление информационных кадров

  • I (i, j) – информационный кадр с параметрами N(S)=i, N(R)=j
  • RR(j) – кадр RR с параметром N(R)=j

Крестиком отмечен искаженный в канале кадр. Ниже приведено описание последовательности операций.

Как видно из диаграммы, искаженные в канале кадры I(2,0), I(3,0), I(4,0) при получении кадра REJ(1) передаются на станцию Б повторно из буфера. Кадры I(0,0) со станции А и I(0,4), I(1,5) со станции Б повторно из буферов не передаются, поскольку они подтверждаются соответственно кадрами RR(1), I(4,1) и RR(2). Необходимо отметить, что нумерация кадров N(S) и N(R) циклическая. При нормальной нумерации для этого отводится 3 бита, а при расширенной - 7 бит. Напомним, что под шириной (размером) окна W понимается максимальное число неподтвержденных кадров в буфере. При заполнении такого числа кадров в буфере согласно алгоритму требуется перейти к повторной передаче этих кадров из буфера. Чем выше пропускная способность канала и больше протяженность канала, тем размер окна выше.


Рассчитаем величину задержки кадра длинной порядка 128 байт при скорости передачи 64 кбит/с. Задержка составляет 128 байт / 64 кбит/с = 16 мсек. Сравним эту величину со временем задержки распространения кадра по спутниковому каналу протяженностью 72000 км, приняв скорость распространения сигнала равной скорости света в вакууме – 300000 км/с. Эта величина составляет 72000 км / 300000 км/с = 240 мсек, т.е. в канале одновременно могут находиться 15 кадров (240/16). Отсюда ясно, почему при использовании спутниковых каналов в сети Х.25 применяется расширенная нумерация и соответственно большая ширина окна W , чем при нормальной нумерации.

Порядковая нумерация не всегда гарантирует доставку отдельного кадра. В тех случаях, когда гарантированная доставка является важным фактором, также используются таймеры передатчика. Передатчик даёт приёмнику определённое количество времени на подтверждение успешной передачи. Если за выделенное время подтверждение от приёмника не происходит, то передатчик повторно посылает кадр.

Сети х.25 – это самые распространенные сети с коммутацией пакетов. Изначально был разработан стек протоколов Х.25, от которого и появилось название сетей. Протокол был разработан в 1974 году международным консультативным комитетом по телефонии и телеграфии (МККТТ).

Широкое распространение сети Х.25 получили по двум основным причинам:

1. Долгое время сети Х.25 были единственными доступными сетями с коммутацией пакетов коммерческого типа.

2. Сеть Х.25 хорошо работает на низкоскоростных и незащищенных линиях связи, которые на сегодняшний день остаются основными линиями передачи данных.

Структура сетей Х.25


ЦКП – центр коммутации пакетов

М-М – аналоговый канал связи, остальные –

Host -ЭВМ – сервер,

М * 1 – маршрутизатор

СРП – сборщик разборщик пакетов

СРП поддерживает 8, 16, 24 асинхронных терминала… есть возможность разогнать до 32, 64 и даже 128 окончаний.

Терминал как правило выходит -> на обычную телефонную сеть и далее -> к СРП через специальный интерфейс RS -232 C

Этот интерфейс и все его функции полностью расписаны в протоколе Х3, регламентирован (разрешен), который используется на сетевом уровне в базовой технологии сетей Х.25

Основные функции, регламентированные протоколом Х.3

1. Установление и разъединение соединения сетей Х.25 с нужными ресурсами.

2. Сборка байтов или символов, поступающих от низкоскоростных терминалов в пакеты необходимой длины и передача их в сеть.

3. Прием пакетов из сети, разборка пакетов, передача данных терминалу.

Неинтеллектуальные терминалы не имеют сетевой адрес, адреса присваиваются только СРП

Стандарт Х.25 регламентирует (определяет) процедуры и правила обмена данными между абонентами (узлами сети) и центрами коммутации пакетов или регламентирует интерфейс между оконечным оборудованием данных и аппаратурой передачи данных – DTE , ООД – оконечное оборудование данные; DCE – АПД – Аппаратура передачи данных


Сети х.25 не имеют к СПД никакого отношения и в этих сетях любое соединение прописано следующим образом:

ООД-> (через Х.25, через интерфейс RS -232 C ) ->АПД -> (через СПД) -> АПД -> (через другой интерфейс чети х.25) -> к ООД

Стек протоколов сети Х.25

Стандарт Х.25 описывает только 3 уровня протокола, т.е. стек протоколов Х.25 состоит из 3х уровней по аналогии с OSI мы имеем ФУ, КУ, СУ.


Транспортный и более высокие уровни реализованы в узлах, но стандартом они не регламентируются.

Для локальной сети достаточно 2 уровня, т.к. нет маршрутизации.

В Глобальной сети задействованы все 3 уровня.


Правила взаимодействия двух смежный уровней на физическом уровне в протоколе Х.25 не регламентируется

А интерфейс между физич и канальным уровнем регламентируется и называется x .21 или x .21 bis

В основе лежит протокол LAP-B, balanced Link access protocol

На канальном уровнях используется протокол доступа к среде LAP или LAP - B , сбалансированный асинхронный дуплексный режим. Полностью соответствует протоколу HDLC .

LAP - B обеспечивает надежную передачу данных между двумя уровнями.

Протокол уровня пакетов называется X .25/3

Основные функции протокола Х.25/3:

1. Установление виртуального соединения между двумя сторонами

2. Управление потоком пакетов, поступающих в СПД (главная функция)

3. Разъединение виртуального соединения

На протокол Х.25/3 не возложены функции маршрутизации, так как он соединяет две точки. Функция маршрутизации реализовывается дополнительным программным модулем.


Сети Х25 – сети с коммутацией пакетов. Есть всего 2 способа коммутации пакетов:

1. Дейтаграмный способ – не гарантирует порядок выполнения доставки, поэтому не используется в сетях Х.25

2. Способ виртуальных каналов – соблюдается порядок выполнения доставки, поэтому этот способ используется в сетях Х.25

Другие способы не используются

Виртуальные каналы бывают:

· Коммутируемые, которые разъединяются после выполнения передачи

Основная функция возложена на третий уровень с помощью 14 различных управляющих пакетов, похожих на супервизорные кадры.

Постоянный виртуальный канал PVC является аналогом выделенного канала.

Коммутируемый виртуальный канал (SVC) напоминает традиционный телефонный вызов и реализует обмен данными. Имеются три типа коммутируемых виртуальных каналов, работающие в дуплексном режиме, но отличающиеся направлением устанавливаемых соединений: входящий SVC, двунаправленный SVC и выходящий SVC.

Информационное взаимодействие в сети X.25 осуществляется на физическом, канальном и сетевом уровнях.

На физическом уровне могут быть использованы любые универсальные или специализированные интерфейсы. Компонентами сети являются устройства трех основных категорий, рисунок 6.1:

- устройства DTE (Data Terminal Equipment);

- устройства DCE (Data Communication Equipment);

- устройства PSE (Packet Switching Exchange).

Устройство PAD - Пакетный адаптер данных (packet assembler/ disassembler) является специфическим устройством сети X.25. Пакетный адаптер данных PAD предназначен для выполнения операции сборки нескольких низкоскоростных потоков байт от алфавитно-цифровых терминалов в пакеты, передаваемые по сети и направляемые компьютерам для обработки.


Рисунок 22.1 – Структура сетей Х.25

Компьютеры и локальные сети обычно подключаются к сети X.25 непосредственно через адаптер X.25 или маршрутизатор, поддерживающий на своих интерфейсах протоколы X.25. Основные функции PAD:

- сборка символов, полученных от асинхронных терминалов, в пакеты;

- разборка полей данных в пакетах и вывод данных на асинхронные терминалы;

- управление процедурами установления соединения и разъединения по сети X.25 с нужным компьютером;

- передача символов, включающих старт-стопные сигналы и биты проверки на четность, по требованию асинхронного терминала;

- продвижение пакетов при наличии соответствующих условий, таких как заполнение пакета, истечение времени ожидания и др.

Основные функции PSE - Коммутатор Х.25:

- прием кадра LAP-B;

- ответ на него другим кадром LAP-B, в котором подтверждается получение кадра с конкретным номером;

- организация повторной передачи кадра при утере или искажении кадра;

В случае правильного приема кадра LAP-B:

- извлечение пакета Х.25,

- на основании номера виртуального канала определение выходного порта,

- формирование нового кадра LAP-B для дальнейшего продвижения пакета.

X.25 функционирует на уровнях 1-3 модели OSI, рисунок 22.2.


Рисунок 22.2 – Протоколы Х.25

Протокол физического уровня канала связи не определен. На канальном уровне используются протоколы LAP и LAP-B.

LAP-B (Link Access Procedure Balanced) – процедура доступа к соединению, сбалансированная.

HDLC (High Level Data Link Protocol) – протокол управления соединением высокого уровня.

Х.25 описывает форматы пакетов и процедуры обмена пакетами между равноправными объектами.

X.75 определяет правила согласования параметров при переходе из сети в сеть. Используется для соединения сетей таких, как X.25, на международном уровне.

MLP (Multilink Procedure) – мультиканальный протокол.

Формат пакета X.25.Формат пакета Х.25 приведен на рисунке 22.3.


Рисунок 22.3 - Формат пакета Х.25

Протокол X.25 (Packet Layer Protocol) обеспечивает для вышележащих уровней сервис с установлением соединения.

На данном уровне определены процедуры установления виртуальных соединений, передачи данных по виртуальным соединениям и разрыва виртуального соединения.

Все пакеты X.25 имеют в своем составе три общих октета:

- GFI (General Format Identifier) – общий идентификатор пакета. GFI указывает модуль VC (8, 128 или 32768 бита);

- LGN (Logical Channel Group Number) – совместно с полем LCN задает номер логического каналаLCN (Logical Channel Number) – задает номер логического канала

- PTI (Packet Type Identifier) – идентификатор типа пакета.

В X.25 определен 21 тип пакета.

Формат кадра LAP-B, рисунок 22.4.


Рисунок 22.4 – Формат кадра LAP-B

Flag (Флаг) - служит для разделения кадров и всегда имеет формат 0х7Е (01111110).

Для исключения появления такой же информационной комбинации используется метод вставки бит (Bit Stuffing).

Control (Управление) - служит для идентификации типа кадра, может включать порядковый номер и информацию от системы управления и контроля ошибок.

FCS (Frame Check Sequence – Контрольная последовательность кадра) - служит для контроля целостности передаваемых данных.

Читайте также: