Мдлп протокол обмена интерфейсного уровня

Обновлено: 19.05.2024

В данной публикации мы рассмотрим протокол передачи мгновенных значений тока и напряжения МЭК 61850-9-2, применение которого пока ограничивается пилотными проектами.

В традиционной схеме подключения устройств РЗА цепи от измерительных трансформаторов тока и напряжения, находящихся на ОРУ или в КРУЭ, прокладываются до терминалов РЗА, размещенных в ОПУ (см. рис. 1).

Рис. 1а. Традиционная схема подключения устройств РЗА к ТТ. Рис 1б. Традиционная схема подключения устройств РЗА к ТН.

Использование концепции шины процесса предполагает, что все сигналы, включая мгновенные значения токов и напряжений, оцифровываются непосредственно в аппарате и передаются устройствам защиты и автоматики в виде цифрового потока данных по информационной сети, называемой шиной процесса (см. рис. 2).

Processbus

Рис. 2. Использование шины процесса для передачи данных.

Как и в случае с остальными протоколами основные концептуальные положения сервиса передачи мгновенных значений описаны главой МЭК 61850-7-2.

Охарактеризуем передачу мгновенных значений тока и напряжения с точки зрения требований, предъявляемых при передаче данных:

  • Требуется передача данных с высокой частотой, что ведёт к появлению больших объёмов информации, передаваемых по сети. Причём, должна быть обеспечена возможность выбора различных частот, наример, меньшая частота в случае использования для целей релейной защиты и большая частота для целей контроля качества электрической энергии;
  • Необходимо обеспечить минимальную задержку при передаче данных по сети шины станции, так как эта задержка в конечном счёте будет влиять на быстродействие устройств РЗА;
  • Измерения, получаемые с различных источников одним приёмником (например, значения тока и напряжения от разных устройств сопряжения), должны быть синхронизированы по времени. В противном случае возможна некорректная работа устройств РЗА;
  • Требуется обеспечить возможность выявления потерь и искажений данных при передаче данных с целью исключения возможных излишних и ложных срабатываний РЗА, а также сигнализации в случае отказа канала связи или устройства сопряжения,
  • Один поток данных может быть востребован различными устройствами (например, данные о напряжении на шинах от устройства сопряжения ТН), поэтому должна быть обеспечена возможность многоадресной передачи данных.
  • Требуется гибкость при формировании кадров данных, поскольку измерения могут поступать как с группы трёхфазных трансформаторов тока или напряжения, так и с комбинированных измерительных преобразователей.

Рассмотрим механизмы с помощью которых решались поставленные задачи.

Обеспечение высокой частоты передаваемых данных на сегодняшний день является обычным требованием к сетям передачи данных, например, при решении задач телефонии или передачи потокового видео. Поэтому, хотя прикладная задача передачи мгновенных значений тока и напряжения и накладывает достаточно высокие требования в части производительности сетевого оборудования, существующее сетевое оборудование в промышленном исполнении вполне способно решать эти задачи.

Отдельно требуется рассмотреть требование по возможности изменения частоты передачи данных. Так, например, при решении задач релейной защиты может потребоваться передавать мгновенные значения с частотой 20 выборок/период, однако для целей контроля качества электрической энергии потребуется существенно более высокая частота. С другой стороны в указанных случаях предъявляются различные требования к быстродействию. Так, в случае передачи данных устройству релейной защиты требуется передать занчения тока и напряжения в темпе реального времени с минимальной задержкой. Тогда как для целей коммерческого учёта и анализа качества допустимо введение задержек при условии точной привязки данных к единому времени.

Исходя из этих условий в стандарте предусмотрено два параметра, которые будут влиять на частоту формирования кадров с выборками мгновенных значений (Sample Rate – SmpRate) и на количество измерений, размещаемых в одном кадре (Number of ASDU – noASDU). Фактическая частота формирования кадре в сеть при этом будет составлять f = SmpRate/noASDU. Так, например, при частоте SmpRate = 80 выборок за период и количестве мгновенных значений в одном кадре noASDU = 1, фактическая частота формирования кадров составит 80 пактов за период или 4 кГц. В случае частоты взятия выборок SmpRate = 256 выборок за период и количестве выборок в кадре noASDU = 8, фактическая частота формирования кадров в сеть составит лишь 1,6 кГц.

Конечно, кадр с 8 выборками будет иметь больший размер, чем с одной выборкой, однако, в силу специфики сетей на базе технологии Ethernet, оптимальная пропускная способность канала передачи данных достигается при максимальной длине кадров. Кроме того, при передаче нескольких выборок в одном кадре используется одна и та же общая часть кадра, что в конечном счёте позволяет повысить эффективность передачи данных в случаях, когда не требуется высокое быстродействие, то есть скорость передачи каждой отдельной выборки.

Вопрос обеспечения минимальных задержек при передаче данных по протоколу GOOSE был достаточно подробно рассмотрен нами. Протокол МЭК 61850-9-2, также как и GOOSE, маппируется непосредственно на протокол второго уровня, что в сочетании с использованием меток приоритета VLAN-Priority и качества обслуживания QoS позволяет значительно повысить приоритет данных, передаваемых по протоколу МЭК 61850-9-2, по сравнению с остальными данными, передаваемыми по той же сети с использованием других протоколов, тем самым, сводя к минимуму задержки как при обработке данных внутри устройств источников и приёмников данных, так и при обработке их сетевыми коммутаторами.

Устройство релейной защиты может получать измерения от разных устройств шины процесса. Например, на защищаемом присоединении может быть установлен только трансформатор тока, тогда как данные о напряжении получаются от ТН, установленного на шинах и подключенного через отдельное устройство сопряжения. Очевидно, что в такой ситуации отсутствие синхронизации между выборками с двух УСШ может привести к ложным и излишним срабатываниям защиты в случае возникновения различных задержек по сети и неодновременного прихода пакетов.

Таким образом достигается синхронизация всех выборок и принимающее устройство может обрабатывать значения токов и напряжений, принятые от разных устройств, компонуя их по номерам выборок (см. рис. 3), причём синхронизация самого принимающего устройства не требуется. С помощью счётчика выборок устройство также может осуществлять контроль целостности принимаемых данных, то есть обнаруживать факты пропажи выборок. Различные устройства по-разному реагируют на пропажу выборок, как правило, это определятся алгоритмами, заложенными в устройство-приёмник и описано в сопроводительной документации.

Processbus1

Рис. 3. Синхронизация и присвоение номеров выборкам.

Важной особенностью передачи данных в цифровом формате является возможность передачи сервисной информации – так называемых мета-данных. Сервисная информация передаётся с использованием меток качества в одном кадре с самими выборками. Такая опция позволяет устройству-издателю снабжать передаваемые значения токов и напряжений метками, отражающими достоверность этих данных, включая информацию о том, что измерения производятся в заданном классе точности, измеряемое значение не выходит за границы допустимого диапазона, значение измерено прямым путём, либо получено на основе косвенных вычислений и т.п. Эти данные могут в дальнейшем использоваться алгоритмами принимающего устройства с целью блокировки тех или иных функций в автоматическом режиме и выдачи сигнализации оперативному персоналу.

  • структуру информационной модели устройства,
  • набор передаваемых данных (4 тока и 4 напряжения),
  • частоты дискретизации измеряемых сигналов (4000 Гц для целей релейной защиты и коммерческого учёта, 12800 Гц для целей контроля качества электроэнергии),
  • способы синхронизации устройств по времени (секундный импульс 1PPS).

Это дало толчок к массовому появлению на рынке как устройств-источников информационных потоков МЭК 61850-9-2LE, так и приемников этих потоков.

Моменты, зафиксированные техническими требованиями МЭК 61850-9-2LE, могут меняться с течением времени (например, может измениться способ синхронизации устройств по времени, структура набора данных и т.д.). И примеры этому уже есть, например, тенденция к использованию протокола PTP для синхронизации устройств по времени вместо описанного в МЭК 61850-9-2 LE синхроимпульса 1PPS, изменение/добавление частот дискретизации измеряемых сигналов и др.

Первая редакция МЭК 61850-9-2 не предполагала использования протоколов резервирования, в связи с чем формат Ethernet-кадра, описанный первой редакцией не включал соответствующих полей. Впоследствии вопрос применения протоколов резервирования на уровне шины процесса встал достаточно остро в связи с чем, в редакции 2 стандарта в описание формата кадра 9-2 были добавлены поля для протоколов резервирования PRP и HSR.

Протокол синхронизации времени не описан самим стандартом МЭК 61850-9-2 вовсе. Глава МЭК 61850-5 содержит лишь требования к точности синхронизации, однако также не оговаривает каким образом должна достигаться эта точность. Единственным документом, прямо указывающим на использованием синхроимпульса 1PPS являются технические требования МЭК 61850-9-2 LE. Следует отметить, что данная спецификация не предполагала использование протокола синхронизации IEEE 1588 v2, профиль для электроэнергетики которого появился уже после принятия МЭК 61850-9-2LE. Однако уже сегодня появляются устройства, поддерживающие новый протокол синхронизации времени вместе с возможностью синхронизации по сигналу 1PPS.

Рассмотренные изменения ведут к необходимости закрепления новых технических требований, или общих договорённостей взамен действующей редакции 9-2 LE и у многих возникает вопрос, когда будет издана вторая редакция 9-2LE? Однако, вторая редакция 9-2LE издана не будет. На смену этому документу придёт стандарт, описывающий требования к цифровому интерфейсу измерительных трансформаторов – МЭК 61869-9.

На сегодняшний день стандарт МЭК 61869-9 Измерительные трансформаторы — Часть 9. Цифровой интерфейс находится в финальной стадии разработки – он опубликован для голосования и сбора замечаний. Этот документ заменит и расширит технические требования МЭК 61850-9-2LE, которые определили первый профиль (или спецификацию) МЭК 61850 для измерительных трансформаторов тока и напряжения и устройств сопряжения. Новый стандарт учитывает опыт, накопленный в работе с техническими требованиями, изложенными в 9-2LE.

Читайте также: