Маршрутизаторы с какими протоколами обладают информацией о топологии сети

Обновлено: 17.05.2024

Всем привет! Сегодня я постараюсь как можно подробнее ответить на вопрос, что же такое топология локальных сетей, какие они бывают и как их правильно подобрать? Если говорить грубо, то это схема по которой будут подключаться компьютеры, сервера и другое сетевое оборудования. Это важное составляющее любой локальной вычислительной сети (ЛВС), так как от этого будет зависеть скорость работы канала, а также устойчивость к различным аварийным ситуациям.

Коротко про ЛВС

Обычно такие компьютеры могут общаться напрямую друг с другом. Если у вас дома есть роутер, то вы уже находитесь в локальной сети. ЛВС разделяются на два типа:

  • Централизованные – в сети есть компьютер или оборудование, которое управляет локалкой.
  • Одноранговые – в такой сети каждый компьютер имеет одни и те же права.

Локальную сеть создают в первую очередь для общения компьютеров и других устройств между собой. Например, дома к роутеру вы можете подключить сетевой принтер и каждый пользователь, подключенный к маршрутизатору, может печатать с него документы. Вы можете смотреть фильмы, находящиеся на компьютере, по DLNA на телевизоре.

В крупных компаниях с помощью ЛВС можно осуществлять документооборот и общение сотрудников, использование общих принтеров, сканеров и другого сетевого оборудования. Также можно осуществлять контроль трафика.

Для подключения компьютеров к локалке обычно используют два вида кабеля:

  • Витая пара – достаточно дешевая, но имеет минус в максимальном расстоянии передачи данных (от 50 до 100 метров – в зависимости от типа кабеля). Читать подробно…
  • Оптическое волокно – передача данных происходит с помощь пучка света. За счет этого расстояние передачи вырастает в сотни раз. Одной из минусов такой технологии является способность сращивать два куска кабеля. Читать подробно…

Также для подключения можно использовать Wi-Fi – это специальная технология, которая позволяет передавать данные с помощью радиоволн. Более подробно про неё можно почитать тут.

Есть также центральные клиентские машины – обычно это компьютеры, ноутбуки или рабочие станции. Для управления используют сервера или маршрутизаторы (роутеры). Если дома у вас есть роутер, то вы уже можете понять, что центральным звеном сети является эта маленькая коробочка. Роутер не только раздает интернет по проводам и Wi-Fi, но также является шлюзом с глобальной сетью интернет.

Также есть оборудование, которое используется только для подключения большого количества устройств. Такие аппараты называют коммутаторами. С виду они очень похожи на роутеры, но имеют совсем другое предназначение. Разбирать их мы не будем, но если кому интересно, то про коммутаторы можно подробно почитать в этой статье.

Про топологию

Что понимается под топологией локальной сети? Итак, что же такое локальная вычислительная сеть, мы разобрались. И тут у каждого грамотного инженера встает вопрос, а как её построить, чтобы все работало. На помощь приходит топология локальной сети – это некая схема подключения всех устройств для нормальной работы, где есть:

  • Узлы – это сами устройства: компьютеры, сервера, принтеры, камеры, роутеры, коммутаторы.
  • Ребра – обычно это физическая связь между двумя узлами.

Есть типы топологий:

  • Информационная – показывает направление потока данных между узлами.
  • Физическая – обычная схема, где показывает приблизительное расположение узлов и связей.
  • Логическая – показывает перемещение сигнала.
  • Правовая – показывает несколько уровней прав.

Если разделить более грубо, то есть две сети: полносвязные и неполносвязные.

Полносвязная ЛВС – когда каждое устройство связано с каждым. Проблемой такого подключения является наличие у того же компьютера большого количество портов, чтобы иметь связь со всеми компьютерами. Применяется крайне редко. Плюс есть проблема при масштабировании такой системы.

Топологии локальных сетей: определение, значения, виды, типы, функции

Так как полносвязные очень редко где применяются, мы поговорим про неполносвязные и их разновидности.

Один из самых дешевых способов связи. Есть один кабель, к которому подключаются другие компьютеры. Чаще всего используют именно коаксиальный кабель. На концах кабеля ставят терминаторы, которые убирают помехи и искажения сигнала.

Топологии локальных сетей: определение, значения, виды, типы, функции

  • Равноправие в сети, хотя это можно отнести и к минусам.
  • Дешевизна, ведь нужен всего один кабель.
  • Быстрое подключение новых устройств
  • Кабель всего один и имеет ограничение в передаче данных. То есть при большом количестве устройств и активном использовании пакеты могут теряться.
  • Низкая производительность сети из-за одного канала.
  • Проблема с нахождением поломки.

Кольцо

Топологии локальных сетей: определение, значения, виды, типы, функции

  • Быстрая настройка и подключение.
  • Небольшая стоимость.
  • При поломке одного узла, сеть все равно функционирует.

Звезда

Топологии локальных сетей: определение, значения, виды, типы, функции

  • При поломке одного узла, сеть продолжает работать. Также выявить поломку достаточно просто.
  • Есть возможность контроля трафика.
  • Нет конфликтов при общении в сети.
  • Управление происходит с одного устройства.
  • Контроль и безопасность.
  • Большие затраты по стоимость.
  • При поломке центрального сервера сеть выходит из строя.

Другие виды

Топологии локальных сетей: определение, значения, виды, типы, функции

Централизованная и децентрализованная система

Также очень часто есть разделение на подсети. Например, у нас в организации есть несколько отделов:

  • Бухгалтерия.
  • Юридический отдел.
  • Отдел кадров.

Нужно разделить эти сети таким образом, чтобы они не имели доступ друг к другу. Вот для этого нужно грамотно настроить систему. В децентрализованной системе обычно каждый компьютер и клиент имеет равные права. Обычно используются в маленьких локальных компьютерных сетях.

Видео

p, blockquote 1,0,0,0,0 -->


p, blockquote 2,0,0,0,0 -->

Что понимается под топологией локальной сети

Программирование и построение компьютерных сетей выросли из математики и поэтому унаследовали математические расчеты и схематику построения устройств и связей. А самим термином топология сети охарактеризовали расположение и схему связей между устройствами. Устройствами выступают компьютеры, концентраторы, роутеры, серверы, принтеры и прочая вспомогательная электроника. Кроме расположения устройств, топология обуславливает компоновку кабелей, варианты размещения коммутирующего оборудования, систему обмена сигналами и прочие запросы потребителей компьютерных технологий.

p, blockquote 3,0,0,0,0 -->

Соединение в сети вызвано необходимостью объединения ресурсов компьютеров, экономией на периферийных устройствах, и как следствие решением комплексных задач. Исходя из конкретных предполагаемых задач и выстраивается топология компьютерной сети. Существуют семь основных видов соединений.

p, blockquote 4,0,0,0,0 -->

Виды и примеры топологий компьютерных сетей

Первоначально использовали три базовых вида топологий это шина, кольцо и звезда. С развитием технологий прибавились ещё четыре – полносвязная, ячеистая, дерево и смешанная.

p, blockquote 5,0,0,0,0 -->

Топология шина

Пожалуй наиболее простая и старая топология локальных сетей. Простота обусловлена наличием всего одной магистрали (кабеля) к которой соединены все устройства. Сигналы передаваемые одним, могут получать все. При этом отдельный компьютер отфильтровывает и принимает необходимую только ему информацию.

p, blockquote 6,0,0,0,0 -->

Топология шина

p, blockquote 7,0,0,0,0 -->

Достоинства такой схемы:

  • простое моделирование;
  • дешевизна конструкции, при условии, что все устройства располагаются недалеко друг от друга;
  • поломка одного или даже нескольких устройств не влияет на работоспособность остальных элементов сети.
  • неполадки на любом участке, а это обрыв шины или поломка сетевого коннектора нарушают работы всей системы;
  • сложность ремонтных работ, прежде всего определения места неисправности;
  • очень низкая производительность – в каждый момент только одно устройство передаёт данные остальным, увеличение числа приборов ведёт к существенному снижению производительности;
  • сложность расширения сети, для этого приходится полностью заменять участки кабеля.

Именно из-за этих недостатков такие сети морально устарели, не обеспечивают современных требований обмена данными и фактически не применяются. По такой топологии создавались первые локальные сети. Роль шины в таких схемах выполнял коаксиальный кабель. Его прокладывали ко всем компьютерам и возле каждого соединяли т-образным штекером (тройником).

p, blockquote 10,0,0,0,0 -->

Топология кольцо

p, blockquote 11,0,0,0,0 -->

Топология кольцо

p, blockquote 12,0,0,0,0 -->

Достоинства соединения кольцом:

  • простота компоновки;
  • возможность построения длинных сетей;
  • не возникает необходимости в дополнительных устройствах;
  • устойчивая работа с хорошей скоростью даже при интенсивной передаче данных.

Но кольцевое соединение имеет и ряд недостатков:

  • каждый компьютер должен быть в рабочем состоянии и участвовать в трансляции, при обрыве кабеля или поломки одного устройства – сеть не работает;
  • на время подсоединения нового прибора схема полностью размыкается, поэтому требуется полное отключение сети;
  • сложное моделирование и настройка соединений;
  • сложный поиск неисправностей и их устранение.

Основное применение кольца получили при создании соединений для удаленных друг от друга компьютеров, установленных в противоположных концах и на разных этажах зданий. Работают такие сети по специально разработанному стандарту Token Ring (802.5). Для надёжности и повышения объёмов обмена информацией монтируют вторую линию. Она используется либо как аварийная, либо по ней передаются данные в противоположном направлении.

p, blockquote 15,0,0,0,0 -->

Топология звезда

Самая распространённая и технологичная система создания сетей. Командует всем сервер, контроллер или коммутатор. Все компьютеры как лучи подсоединены к нему. Общение между ними происходит только через центральное устройство. Топология сети в которой все компьютеры присоединены к центральному узлу стала основой для построения современных офисных локальных сетей.

p, blockquote 16,0,0,0,0 -->

Топология звезда

p, blockquote 17,0,0,0,0 -->

В качестве узла используются активные или пассивные коммутаторы. Пассивный, это просто коробка соединения проводов не требующая питания. Активный коммутатор соединяет схему проводной или беспроводной технологией и требует подключения к питанию. Он может усиливать и распределять сигналы. Топология сети звезда обрела популярность благодаря множеству достоинств:

  • высокая скорость и большой объём обмена данными;
  • повреждение передающего кабеля или поломка одного элемента (кроме центрального) не снижает работоспособность сети;
  • широкие возможности для расширения, достаточно смонтировать новый кабель или настроить доступ на коммутаторе;
  • простая диагностика и ремонт;
  • легкий монтаж и сопровождение.

Как и большинство сетей, соединение звезда имеет ряд недостатков, все они связаны с необходимостью использования центрального коммутатора:

  • дополнительные затраты;
  • он же — слабое звено, поломка приводит к неработоспособности всего оборудования;
  • число подключаемых устройств и объём передаваемой информации зависит от его характеристик.

Несмотря на недостатки звезда широко используется при создании сетей на больших и маленьких предприятиях. А соединяя между собой коммутаторы получают комбинированные топологии.

p, blockquote 20,0,0,0,0 -->

Полносвязная или сеточная топология

В полносвязной системе все устройства соединены между собой отдельным кабелями, образующими сетку. Это очень надёжная схема коммуникации. Но целесообразна только при малом количестве соединяемых приборов, работающих с максимальной загрузкой. С ростом количества оборудования резко возрастает число прокладываемых коммуникаций. Поэтому широкого распространения не получила, в отличие от своей производной – частичной сетки.

p, blockquote 21,0,0,0,0 -->

Сеточная топология

p, blockquote 22,0,0,0,0 -->

Ячеистая топология

Частичная сетка или ячеистая топология напрямую связывает только обменивающиеся самыми большими объёмами данных и самые активные компьютеры. Остальные общаются посредством узловых коммутаторов. Сетка соединяющая ячейки, выбирает маршруты для доставки данных, обходя загруженные и разорванные участки.

p, blockquote 23,0,0,0,0 -->

Ячеистая топология

p, blockquote 24,0,0,0,0 -->

Преимущества частичной сети:

  • надежность, при отказе отдельных каналов коммутации будет найден альтернативный путь передачи данных;
  • высокое быстродействие, так как основной поток данных передается по прямым линиям.

Недостатки ячеистой технологии:

  • стоимость монтажа и поддержания достаточно высока, т.к. несмотря на частичность сетки всё равно требуется большое количество коммутационных линий;
  • трудность построения и коммутирования сети при большом количестве соединяемых устройств.

Из-за дороговизны и сложности построения применяется в основном для построения глобальных сетей.

p, blockquote 27,0,0,0,0 -->

Топология дерево

Эта топология является комбинацией нескольких звёзд. Архитектура построения предусматривает прямое соединение пассивных или активных коммутаторов.

p, blockquote 28,0,0,1,0 -->

Топология дерево

p, blockquote 29,0,0,0,0 -->

Такой тип топологии чаще всего используют при монтаже локальных сетей с небольшим количеством приборов, в основном при создании корпоративных коммутаторов. Совмещает довольно низкую стоимость и очень хорошее быстродействие. Особенно при комбинировании различных линий передач — сочетании медных и волоконных кабельных систем, и применении управляемых коммутаторов.

p, blockquote 30,0,0,0,0 -->

Смешанная топология

Чистое применение какой-то одной топологии редкое явление. Очень часто с целью экономии на коммутационных линиях применяют смешанные схемы. Самыми распространенными из которых являются:

В первом случае компьютеры объединены в звёзды посредством коммутаторов, а они уже закольцованы. По сути все без исключения компьютеры заключены в круг. Такое соединение умножает достоинства обеих сетей, так как коммутаторы собирают в одну точку все подключенные устройства. Они могут просто передавать или усиливать сигнал. Если рассмотреть систему технологии распространения данных, то такая топология подобна обычному кольцу.

p, blockquote 32,0,0,0,0 -->

В звёздно — шинной сети комбинируется топология шин и звёзд. К центральному устройству соединяют единичные компьютеры и сегменты шин. При такой топологической схеме можно использовать несколько центральных устройств, из которых собирают магистральную шину. В конечном результате собирается звёздно — шинная схема. Пользователи могут одновременно использовать звёздную и шинную топологии, и легко дополнять компьютеры.

p, blockquote 33,0,0,0,0 -->

Смешанные соединяют в себе все плюсы и минусы составляющих их видов топологий локальных сетей.

p, blockquote 34,0,0,0,0 -->

Программы для создания топологий сети

Для создания и корректировки написано много программ. Среди самых распространённых и наиболее удобных выделяются следующие:

  • Microsoft Visio
  • eDraw Max
  • Схема Сети
  • Векторный 2D-редактор CADE для Windows
  • Diagram Designer
  • Concept Draw Pro
  • Dia
  • Cisco Packet Tracer LanFlow
  • NetProbe
  • Network Notepad

Некоторые бесплатные, а за многие придётся заплатить. Но даже у большинства платных есть пробный период, за который можно понять подойдёт она или нет.

p, blockquote 36,0,0,0,0 -->

p, blockquote 37,0,0,0,0 --> p, blockquote 38,0,0,0,1 -->

Топология является самым важным фактором быстродействия и надёжности коммуникаций. При этом всегда можно комбинировать основными схемами топологий для того, чтобы добиться наилучшего результата. Важно знать и помнить, как преимущества и недостатки каждого соединения влияют на проектируемую или эксплуатируемую топологическую сеть. Поэтому схему нужно заранее тщательно планировать.


Компьютерные сети

Для локальной вычислительной сети (ЛВС) топология считается одной из ее важнейших характеристик. Топология локальных сетей – это максимально формализованное представление структуры. Она существенно облегчает разработчикам и администраторам весь круг задач – от закупки и размещения оборудования, трассировки каналов связи, до обслуживания и поиска неисправностей.

Топологии локальных сетей: определение, значения

В практике используют несколько вариантов топологий. Как классифицируются схемы, определяется назначением и отображаемой информацией.

Физическая

Физическая топология описывает реальную конфигурацию связей между узлами локальной сети и, частично, их размещение. Последнее актуально, когда сетевое оборудование (рабочие станции и серверы, коммутационная аппаратура) расположены территориально обособлено, например, в разных зданиях.

В точках схемы (вершинах графа) изображают узлы сети:

  • компьютеры – рабочие станции, серверы, мобильные терминалы:
  • сетевое оборудование – коммутаторы (хабы), маршрутизаторы, точки доступа;
  • другие устройства с сетевым доступом или управлением – принтеры, факсы, ИБП, АТС и пр.

Логическая

Этот вариант топологии описывает логику прохождения по каналам связи и обработки узлами локальной сети сигналов. Чаще всего не разрабатывается как самостоятельная схема, а накладывается на физическую. В зависимости от используемых протоколов, может составляться несколько схем, например, отдельные для UDP и TCP-IP.

Физическая и логическая топология

Информационная

Топология отражает организацию информационного взаимодействия в локальной сети. Чаще в вершинах графа размещают не физические устройства, а сетевые приложения. Ребра графа отражают потоки информации между ними.

Возможно наложение схемы на физическую топологию, но такой вариант применяется крайне редко. Это обусловлено вероятными кардинальными различиями топологий. Примером служит домашняя беспроводная сеть:

  • точка доступа (Wi-Fi роутер) на физическом уровне является центральным узлом, ЛВС имеет признаки иерархической организации.
  • все терминалы абсолютно равноправны, соответственно, сеть можно считать одноранговой.

В большинстве случаев, когда говорят о топологии ЛВС, имеют в виду именно ее физическую организацию. Логическую и информационную схемы разрабатывают, в основном, для сложных компьютерных сетей предприятий или провайдеров телекоммуникационных услуг.

Виды и примеры топологий компьютерных сетей

Локальные сети строят, используя различные виды топологии. Каждому присущи собственные достоинства и недостатки.

Поэтому выбор топологии должен производиться по результатам тщательного анализа основных факторов, среди которых:

  • Связь между узлами. В это понятие входит не только реализация физических соединений (тип кабеля, стандарт беспроводной связи и т.д.), но и обмен данными, например, дуплексный или полудуплексный. Частным случаем выступают производительность и скорость передачи данных.
  • Простота построения сети. Здесь учитывают прокладку кабельных линий, размещение точек доступа и повторителей для беспроводных сетей, возможности добавления узлов.
  • Масштабируемость. Определяет, насколько сложной становится процедура расширения локальной сети при необходимости добавления новых рабочих станций или их групп, сетевого оборудования.
  • Максимальная длина связей. Этот фактор связан с затуханием сигнала в среде передачи и может стать причиной существенного усложнения конфигурации сети на значительной площади.
  • Наличие точек критической уязвимости и области их воздействия. Под такими точками понимают узлы или связи, нарушение работоспособности которых приводит к проблемам в работе всей сети или ее сегментов.
  • Надежность и устойчивость. Характеризуют возможность локальной сети оставаться в работе и выполнять задачи при проблемах на узлах и связях топологии.
  • Дополнительные требования. К ним относятся любые другие условия, необходимые при использовании локальной сети определенной топологии, например, связанные с распространением сигналов.

К базовым топологиям относят 3 вида:

  • шина (bus);
  • звезда (star);
  • кольцо (ring).

Топология шина

При использовании такой топологии в локальной сети организуется общий физический канал (шина) – один или несколько проводов, к которым параллельно подключаются сетевые адаптеры узлов. Распространенный в недалеком прошлом пример применения решения – сеть с коаксиальным кабелем и T-коннекторами для подключения.

В структуре отсутствует центральный узел, который обеспечивает обмен между абонентами. Каждое из подключенных устройств принимает предназначенные ему пакеты и передает данные в общий канал.

Топология шина

В связи с этим требуется организация полудуплексного обмена – двустороннего, но с соблюдением очередности между абонентами. Решает проблему и использование других алгоритмов мультиплексирования. В противном случае, когда два и более узла осуществляют одновременную передачу пакетов по шине, высока вероятность сбоев (т.н. коллизий). Это также ограничивает реальную скорость обмена, особенно при подключении значительного числа устройств.

Еще одна особенность такой реализации – необходимость заглушек (терминаторов) на свободных концах шины. Она обусловлена физическими свойствами проводников, которые образуют т.н. линию с распределенными параметрами. В таких линиях наблюдается эффект отражения сигнала на неподключенном конце. Его проявление в канале передачи данных спровоцирует коллизии. Требование распространяется на любые проводные линии.

Подключение нескольких Wi-Fi устройств к роутеру (точке доступа) по одному (из 11) каналов диапазона также можно рассматривать как шину с мультиплексированием.

К достоинствам шинной топологии относят:

  • простоту организации сети, в том числе, прокладки общей шины и подключения новых абонентов;
  • устойчивость к отказам отдельных узлов локальной сети.

Недостатков у общей шины (особенно, в проводном варианте) больше:

Топология кольцо

В такой топологии каждый из узлов локальной сети оказывается связан только с двумя соседними. Соединение выполняется парой приемник-передатчик. Передача информации осуществляется только в одном направлении. При этом любой абонент полностью транслирует полученные пакеты, если они предназначены другому узлу.

  • Практически снимаются ограничения на длину соединений, поскольку каждая локальная пара приемник-передатчик выступает усилителем сигнала. Они продолжают действовать, только если расстояния между соседними точками сравнимы с показателями затухания для среды передачи.
  • Нет эффекта отражения сигнала в проводных линиях, поскольку неподключенных концов не остается.
  • Разделение доступа для предотвращения коллизий осуществляют передачей маркера пакета, сигнализирующего о свободном канале. После его получения, компьютер, которому необходимо передать данные изменяет маркер, и отправляет пакеты. После получения квитанции (подтверждения) от приемника – снова отправляет маркер по кольцу.

Топология кольцо

В результате кольцевая топология позволяет добиться в локальной сети высокой производительности. Такую структуру легко реализовать, проста она и в настройке.

Топология звезда

Особенность такой топологии – наличие в локальной сети центрального узла, К нему независимыми линиями связи подключены все абоненты. Обмен данными между любыми участниками ведется только через центральный узел. Пример реализации – Ethernet сеть с центральным коммутатором (хабом) и подключением клиентского оборудования витой парой.

Центральный узел локальной сети может быть:

  • Пассивным (хаб, неуправляемый коммутатор). В этом случае пакет от передающего абонента транслируется всем остальным, Обрабатывает его только рабочая станция, адрес которой содержится в заголовке пакета. Решение дешевое, но при большом количестве узлов сети приводит к высокой загрузке каналов связи.
  • Активным. Функции центрального узла выполняет компьютер (сервер), управляемый или интеллектуальный коммутатор, маршрутизатор. Их отличие – дополнительные функции, например, хранение в ассоциативной памяти конфигурации локальной сети (пар адрес-порт) или таблиц маршрутизации, управление приоритетами с протоколом QoS и др. Это позволяет превратить широковещательный трафик в избирательный, сократить загрузку каналов, построить защиту от DDoS-атак (намеренных или случайных).

Топология звезда для локальной сети имеет преимущества по:

  • Управляемости и простоте администрирования – на центральном узле ЛВС эти задачи решать удобнее.
  • Масштабируемости. При добавлении новых устройств достаточно подключения отрезка кабеля в свободный порт хаба. Аналогично присоединяют и целые сегменты сети или подсети.
  • Устойчивости к выходу из строя отдельных рабочих станций или других устройств клиентов, обрыву отдельных сегментов (лучей звезды). В обоих случаях неисправность на функционирование остальных машин и каналов связи не влияет.

Среди недостатков звездной конфигурации отмечают:

  • Удорожание, по сравнению с другими базовыми. Оно связано с установкой центрального оборудования и прокладку отдельных линий связи от него к каждой точке подключения.
  • Появление критической точки уязвимости. Им становится центральный узел, выход из строя которого парализует локальную сеть или ее сегмент полностью.

Ячеистая (древовидная)

Развитием топологии звезда стала древовидная. Такая локальная сеть выглядит как иерархическая комбинация сегментов, каждый из которых построен по звездной топологии. Центральные узлы таких сегментов соединяются между собой:

  • с одним родительским, более высокого уровня в иерархии;
  • с любым количеством (по числу доступных портов) дочерних, более низкого уровня.

Ячеистая топология

  • Основной структурный компонент локальной сети – ячейка, группа узлов, соединенных между собой.
  • Каждый из узлов входит более чем в одну ячейку.
  • Часть или все элементы ячейки выступают ретрансляторами пакетов для связанных с ними.

В результате формируется структура, когда для каждого узла локальной сети одновременно существует несколько путей передачи информации адресату. Система получает максимальную устойчивость – выход из строя одного узла не сказывается на работоспособности сети в целом.

Смешанная топология

Смешанной или гибридной называют топологию локальной сети, в которой для сегментов или подсетей и их объединения используют несколько базовых.

Такие комбинации, например звездно-шинная или звездно-кольцевая реализовывают оптимальную структуру для конкретных задач. Однако недостатки присущие им остаются в силе и для комбинированной.

Смешанная топология

Централизованная и децентрализованная система

Сегодня в компьютерных сетях приоритетом стала централизованная организация. В этом случае основные функции системы – маршрутизация, администрирование, выделение адресов реализованы на центральном устройстве (рабочей станции, сервере, маршрутизаторе, коммутаторе). Этим достигается эффективное управление ресурсами, надежность и отказоустойчивость.

Один из путей ее устранения – переход к децентрализованной организации. В этом случае часть функций центрального делегируется другим узлам локальной сети. Большинство из них равноправны. При этом получают либо те же права и функционал, что и делегирующий, либо статус резервных с дублированием данных.

Это дает вместо одного варианта решения сетевой задачи (например, обмена между абонентами) несколько равнозначных. Надежность и отказоустойчивость системы кратно возрастает.

Пример децентрализованной организации –упомянутые mesh (ячеистые) локальные сети. Аналогия в глобальном пространстве интернет – блокчейн-сети, способные сохранить полный функционал даже при единственном рабочем криптовалютном кошельке.

Полносвязная или сеточная топология

Когда узел в локальной сети объединен прямыми связями не с одним, а с несколькими, говорят о сеточной топологии. Такой подход используется при построении ячеистых (mesh) сетей. Удобна она для организации децентрализованных систем.

При отсутствии в ней некоторых связей она становится неполносвязной.

Полносвязная или сеточная топология

Таким образом, топология – представление локальной сети, отображающее ее физическую, логическую или информационную модель. При построении ЛВС используют базовые топологии – шина, кольцо, звезда или их комбинации и модификации. При этом учитывают характерные свойства, преимущества и недостатки структур.

Всем привет! Сегодня я постараюсь как можно подробнее ответить на вопрос, что же такое топология локальных сетей, какие они бывают и как их правильно подобрать? Если говорить грубо, то это схема по которой будут подключаться компьютеры, сервера и другое сетевое оборудования. Это важное составляющее любой локальной вычислительной сети (ЛВС), так как от этого будет зависеть скорость работы канала, а также устойчивость к различным аварийным ситуациям.

Коротко про ЛВС

Обычно такие компьютеры могут общаться напрямую друг с другом. Если у вас дома есть роутер, то вы уже находитесь в локальной сети. ЛВС разделяются на два типа:

  • Централизованные – в сети есть компьютер или оборудование, которое управляет локалкой.
  • Одноранговые – в такой сети каждый компьютер имеет одни и те же права.

Локальную сеть создают в первую очередь для общения компьютеров и других устройств между собой. Например, дома к роутеру вы можете подключить сетевой принтер и каждый пользователь, подключенный к маршрутизатору, может печатать с него документы. Вы можете смотреть фильмы, находящиеся на компьютере, по DLNA на телевизоре.

В крупных компаниях с помощью ЛВС можно осуществлять документооборот и общение сотрудников, использование общих принтеров, сканеров и другого сетевого оборудования. Также можно осуществлять контроль трафика.

Для подключения компьютеров к локалке обычно используют два вида кабеля:

  • Витая пара – достаточно дешевая, но имеет минус в максимальном расстоянии передачи данных (от 50 до 100 метров – в зависимости от типа кабеля). Читать подробно…
  • Оптическое волокно – передача данных происходит с помощь пучка света. За счет этого расстояние передачи вырастает в сотни раз. Одной из минусов такой технологии является способность сращивать два куска кабеля. Читать подробно…

Также для подключения можно использовать Wi-Fi – это специальная технология, которая позволяет передавать данные с помощью радиоволн. Более подробно про неё можно почитать тут.

Есть также центральные клиентские машины – обычно это компьютеры, ноутбуки или рабочие станции. Для управления используют сервера или маршрутизаторы (роутеры). Если дома у вас есть роутер, то вы уже можете понять, что центральным звеном сети является эта маленькая коробочка. Роутер не только раздает интернет по проводам и Wi-Fi, но также является шлюзом с глобальной сетью интернет.

Также есть оборудование, которое используется только для подключения большого количества устройств. Такие аппараты называют коммутаторами. С виду они очень похожи на роутеры, но имеют совсем другое предназначение. Разбирать их мы не будем, но если кому интересно, то про коммутаторы можно подробно почитать в этой статье.

Про топологию

Что понимается под топологией локальной сети? Итак, что же такое локальная вычислительная сеть, мы разобрались. И тут у каждого грамотного инженера встает вопрос, а как её построить, чтобы все работало. На помощь приходит топология локальной сети – это некая схема подключения всех устройств для нормальной работы, где есть:

  • Узлы – это сами устройства: компьютеры, сервера, принтеры, камеры, роутеры, коммутаторы.
  • Ребра – обычно это физическая связь между двумя узлами.

Есть типы топологий:

  • Информационная – показывает направление потока данных между узлами.
  • Физическая – обычная схема, где показывает приблизительное расположение узлов и связей.
  • Логическая – показывает перемещение сигнала.
  • Правовая – показывает несколько уровней прав.

Если разделить более грубо, то есть две сети: полносвязные и неполносвязные.

Полносвязная ЛВС – когда каждое устройство связано с каждым. Проблемой такого подключения является наличие у того же компьютера большого количество портов, чтобы иметь связь со всеми компьютерами. Применяется крайне редко. Плюс есть проблема при масштабировании такой системы.

Топологии локальных сетей: определение, значения, виды, типы, функции

Так как полносвязные очень редко где применяются, мы поговорим про неполносвязные и их разновидности.

Один из самых дешевых способов связи. Есть один кабель, к которому подключаются другие компьютеры. Чаще всего используют именно коаксиальный кабель. На концах кабеля ставят терминаторы, которые убирают помехи и искажения сигнала.

Топологии локальных сетей: определение, значения, виды, типы, функции

  • Равноправие в сети, хотя это можно отнести и к минусам.
  • Дешевизна, ведь нужен всего один кабель.
  • Быстрое подключение новых устройств
  • Кабель всего один и имеет ограничение в передаче данных. То есть при большом количестве устройств и активном использовании пакеты могут теряться.
  • Низкая производительность сети из-за одного канала.
  • Проблема с нахождением поломки.

Кольцо

Топологии локальных сетей: определение, значения, виды, типы, функции

  • Быстрая настройка и подключение.
  • Небольшая стоимость.
  • При поломке одного узла, сеть все равно функционирует.

Звезда

Топологии локальных сетей: определение, значения, виды, типы, функции

  • При поломке одного узла, сеть продолжает работать. Также выявить поломку достаточно просто.
  • Есть возможность контроля трафика.
  • Нет конфликтов при общении в сети.
  • Управление происходит с одного устройства.
  • Контроль и безопасность.
  • Большие затраты по стоимость.
  • При поломке центрального сервера сеть выходит из строя.

Другие виды

Топологии локальных сетей: определение, значения, виды, типы, функции

Централизованная и децентрализованная система

Также очень часто есть разделение на подсети. Например, у нас в организации есть несколько отделов:

  • Бухгалтерия.
  • Юридический отдел.
  • Отдел кадров.

Нужно разделить эти сети таким образом, чтобы они не имели доступ друг к другу. Вот для этого нужно грамотно настроить систему. В децентрализованной системе обычно каждый компьютер и клиент имеет равные права. Обычно используются в маленьких локальных компьютерных сетях.

Видео

Маршрутизация является одной из важнейших операций в объединенных сетях IP. Маршрутизацией называется процесс построения, сравнения и выбора маршрута в сети к произвольному IP-адресу. Устройства, выполняющие эти функции, называют маршрутизаторами. Основные функции маршрутизаторов следующие:

· обмен информации о локально подключенных хостах и сетях;

· сравнение альтернативных путей;

· согласование топологии сети.

Маршрутизаторы выполняют свои функции в двух режимах: либо используют заранее запрограммированные статические маршруты, либо строят маршруты с использованием протоколов динамической маршрутизации.

В свою очередь, протоколы динамической маршрутизации делятся на две категории: дистанционно-векторные и топологические протоколы. Основные различия между ними в алгоритмах поиска и построения новых маршрутов.

Статическая маршрутизация основана на статических, заранее запрограммированных маршрутах. Преимущества статической маршрутизации заключаются:

· в повышении надежности сети;

· эффективном расходовании ресурсов;

· возможности применения для диагностики и временного разрешения проблем в сети;

· обеспечении безопасности сети.

Основными недостатками такого вида маршрутизации являются необходимость ручного изменения маршрутов в случае возникновения сбоев, увеличение ручной работы в случае возрастания объемов сети.

Дистанционно-векторная маршрутизация основана на алгоритмах Беллмана-Форда, согласно которым копии таблиц маршрутизации периодически передаются узлам, находящимся в непосредственном соседстве. Каждый получатель добавляет в таблицу значение дистанции и передает его своим непосредственным соседям. Процесс повторяется по всем направлениям и в результате каждый маршрутизатор получает сведения о других маршрутизаторах и накапливает информацию о соседях.

Недостатки дистанционно-векторной маршрутизации следующие:

· в случае сбоя или изменений в сети необходимо некоторое время на согласование, в течение которого сеть может быть перегружена;

· маршрутизатор ничего не знает о фактической топологии сети и других маршрутизаторах;

· периодически происходят рассылки информации о состоянии маршрутизаторов, что может загружать сеть.

Основным достоинством дистанционно-векторных протоколов является их простота. Эти протоколы эффективны в очень мелких сетях с минимальным количеством альтернативных путей и отсутствием жестких требований к производительности. Типичным представителем таким протоколов является протокол RIP (описан в документе RFC1058).

Алгоритмы топологической маршрутизации ведут сложную базу данных, описывающую топологию сети.


менений в сети. Топологическая маршрутизация обладает двумя существенными недостатками:

1) на стадии сбора первоначальной информации по сети передается большой объем информации, существенно снижая возможности сети по передаче данных;

2) топологическая маршрутизация требует больших затрат памяти и процессорных ресурсов.

Решаются эти проблемы посредством планирования и технического оснащения сети.

При создании TCP/IP была выбрана иерархическая архитектура, позволяющая эффективно объединять различные сети. При пересылке между различными сетями дейтаграмма проходит через устройства, выполняющие маршрутизацию. Если адрес получателя совпадает с адресом локальной сети, то маршрутизатор передает дейтаграмму в сеть для доставки, иначе дейтаграмма пересылается следующему маршрутизатору в объединенной сети. В глобальных сетях используются многочисленные специальные устройства, предназначенные для выполнения маршрутизации. Они различаются по выполняемым функциям:

· шлюз (gateway) – компьютер, выполняющий преобразование протоколов. Шлюзы работают на уровнях модели OSI с 4 по 7 (например, шлюз электронной почты). Шлюзы очень часто выполняют преобразование нескольких протоколов в зависимости от сетевых подключений, например, также они могут выполнять шифрование/дешиф-рование данных;

· мост (bridge) – компьютер, соединяющий две сети и более, использующий один протокол. Мост работает на уровне 2 модели OSI и использует адреса канального уровня (а не адреса IP);

· маршрутизатор (router) – компьютер, пересылающий дейтаграммы в сети. Маршрутизаторы работают на уровне 3 модели OSI и дополнительно могут выполнять другие функции, например, преобразование сетевых адресов (NAT) или обеспечение безопасности.

Каждое из этих устройств, согласно своим функциям, выполняет передачу данных по объединенным сетям.

Срочно?
Закажи у профессионала, через форму заявки
8 (800) 100-77-13 с 7.00 до 22.00

Читайте также: