Как называется защищенный протокол авторизации пользователей для финансовых операций без присутствия

Обновлено: 08.05.2024

В наши дни не обязательно идти в банк, чтобы совершить какие-либо денежные переводы; не обязательно идти в энергопоставляющую компанию, чтобы оплатить счет за электрический свет; не обязательно идти на железнодорожный вокзал, чтобы приобрести билеты на поезд — все эти и другие подобные вопросы, занимающие массу времени, упрощаются и решаются с помощью Интернета.

Сегодня есть множество областей, где выполнение задачи достигается за счет взаимодействия человека с компьютером — путем использования какого-либо сайта или приложения на мобильном устройстве. Подобные системы должны иметь надлежащий уровень защиты и первое с чем сталкивается пользователь при их использование — это идентификация, аутентификация и авторизация. В чем разница между ними? Давайте рассмотрим подробнее.

Что такое идентификация?

Предположим, что есть определенная система или база данных, где содержится ряд из параметров (идентификаторов), например:

  • ID пользователя;
  • ФИО (фамилия, имя и отчество);
  • номер телефона; ;
  • адрес электронной почты;
  • логин (никнейм);
  • реквизиты банковской карты;
  • номер автомобиля;
  • серийный номер (штрих-код);
  • трек-номер; ;
  • адрес веб-сайта;
  • и т. д.

Каждый раз, когда что-либо покупаете в Интернете, где-либо регистрируетесь, Вы получаете идентификатор — определенный параметр позволяющий взаимодействовать с системой. Как правило, он является уникальным — не пересекается с другими информационными системами, участниками и пользователями. Таким образом, при необходимости получить доступ к системе или узнать какие-либо сведения, потребуется предоставить один или несколько идентификаторов. Исходя из этого, можно сказать, что идентификации — процесс позволяющий однозначно определить (распознать) субъект или объект, по его идентификатору, в той или иной системе.

Для большего понимания давайте рассмотрим на примере простой ситуации. Вы находитесь дома, занимаетесь своими делами: смотрите фильмы для взрослых, делаете физические упражнения или читаете статью про кибербезопасность на моём сайте. В один момент Вы слышите звонок в дверь, прекращаете заниматься своей деятельностью и направляетесь открывать. Подойдя к двери смотрите в глазок, но никого не видите, спрашиваете: "Кто там?" и слышите в ответ: "Это я, ИМЯ человека!". Имя человека по ту стороны двери, в данной ситуации, является идентификатором. Правильный или неправильный ответ на вопрос — процесс идентификации.

Рассмотрим на примере другой ситуации. Вы совершаете звонок в банк с целью получить какую-либо информацию по Вашей банковской карте. Сотрудник, отвечающий на Ваш звонок, прежде чем предоставить информацию, обязан Вас идентифицировать. Помимо номера телефона, он может запросить у Вас другой идентификатор, например, номер банковской карты или ФИО. Ваш ответ, в данном случае — идентификация.

Что такое аутентификация?

Для того чтобы предотвратить несанкционированный доступ к системе и данным, одной лишь идентификации недостаточно, поэтому применяют аутентификацию, а в последнее время, все более актуальным становится вопрос — двухфакторной аутентификации. Использование той или иной характеристики в системе зависит от требуемой надёжности, защищённости и стоимости внедрения.

Понятие аутентификации подразумевает проверку подлинности идентификатора или человека (объекта или субъекта). Для этого выделяют три основных фактора аутентификации:

  • знания (то, что известно только нам) – пароль, ПИН-код, графический ключ и т. д.;
  • владения (то, что имеем только мы) - мобильное устройство, смарт-карта, ключ и т. п.;
  • свойства (то, что является нашей неотъемлемой частью) - биометрические параметры (отпечатки пальцев и ладони, голос, сетчатка глаза и т. д.).

Для общего понимания, рассмотрим на предыдущих примерах. В первом случае, когда к Вам приходят незваные гости и на вопрос "Кто там?" в ответ слышите только имя — это будет идентификация. Порой ее недостаточно, поэтому если спросить какую-либо информацию (фактор аутентификации), которую знает только данный человек, например: "Какое у Вас имя? Сколько лет? На какой ягодице у Вас родинка? и т.д.", то ответ данного человека — аутентификация.

Во случае общения с сотрудником в банке, если информация или требуемые действия будут выходить за рамки идентификации, то сотрудник, для подтверждения подлинности, попросит уточнить фактор аутентификации, например, кодовое слово или последние 3 операции по карте (с точным перечислением содержимого и стоимости). Ваш ответ на его запрос — процесс аутентификации.

Что такое авторизация?

Предоставление доступа к той или иной системе, присутствие в ней и выполнения определенных действий — авторизация. Понятие подразумевает, что человек прошедший авторизацию получает полное право выполнять действия в рамках его привилегий и полномочий, для этого в информационной системе могут применять три основные категории:

  • избирательное управление доступом — доступ к информации и выполнению тех или иных действий предоставлен определённому пользователю или группе пользователей;
  • мандатное управление — предоставление и ограничение доступа к информации по степени ее секретности. Действия пользователей регламентируется уровнями доступа или же должностью пользователей;
  • доступ по ролям — гибкая форма разграничения доступа, сочетающая две предыдущие, которая варируется в зависимости от ситуации, в конкретный период времени.

Если рассмотреть на приведенных примерах, то в первом случае, если человек пройдет идентификацию и аутентификацию, и Вы откроете ему дверь для доступа в квартиру — это будет считаться авторизацией.

Вторая ситуация, в момент, когда банковский сотрудник получит необходимые ему сведения, а затем предоставит или сделает желаемое для Вас (например, перевод денежных средств) - этот процесс будет называться авторизацией.

Связь между идентификацией, аутентификацией и авторизацией

Все три выше перечисленных процесса взаимодействуют между собой и не существуют друг без друга. В первую формируется идентификатор, затем происходит подтверждения подлинности и соответствия, а в последствие — Вы пользуетесь всеми возможностями и преимуществами системы, в рамках своих полномочий.

В Интернете на каком-либо сайте это будет выглядеть подобным образом:

  1. идентификация — проходите регистрацию;
  2. аутентификация — используете логин и пароль;
  3. авторизация — пользуетесь предоставленными ресурсами и возможностями.

К слову говоря, Вы сразу же перейти к практике — зарегистрироваться здесь на сайте, затем войти с помощью логина и пароля и воспользоваться возможностями, которые имеют только пользователи, например, написать комментарий.

Аутентифика́ция (англ. Authentication ) — процедура проверки подлинности [1] , например: проверка подлинности пользователя путём сравнения введённого им пароля с паролем в базе данных пользователей; подтверждение подлинности электронного письма путём проверки цифровой подписи письма по ключу проверки подписи отправителя; проверка контрольной суммы файла на соответствие сумме, заявленной автором этого файла. В русском языке термин применяется в основном в сфере информационных технологий.

Учитывая степень доверия и политику безопасности систем, проводимая проверка подлинности может быть односторонней или взаимной. Обычно она проводится с помощью криптографических методов.

Аутентификацию не следует путать с авторизацией [2] (процедурой предоставления субъекту определённых прав) и идентификацией (процедурой распознавания субъекта по его идентификатору).

Содержание

История

В настоящее время в связи с обширным развитием сетевых технологий, автоматическая аутентификация используется повсеместно.

Элементы системы аутентификации

В любой системе аутентификации обычно можно выделить несколько элементов [3] :

  • субъект, который будет проходить процедуру аутентификации
  • характеристика субъекта — отличительная черта
  • хозяин системы аутентификации, несущий ответственность и контролирующий её работу
  • сам механизм аутентификации, то есть принцип работы системы
  • механизм, предоставляющий или лишающий субъекта определенных прав доступа

Факторы аутентификации

Ещё до появления компьютеров использовались различные отличительные черты субъекта, его характеристики. Сейчас использование той или иной характеристики в системе зависит от требуемой надёжности, защищенности и стоимости внедрения. Выделяют 3 фактора аутентификации [4] :

  • Что-то, что мы знаем — пароль. Это секретная информация, которой должен обладать только авторизованный субъект. Паролем может быть речевое слово, текстовое слово, комбинация для замка или персональный идентификационный номер (PIN). Парольный механизм может быть довольно легко реализован и имеет низкую стоимость. Но имеет существенные минусы: сохранить пароль в секрете зачастую бывает проблематично, злоумышленники постоянно придумывают новые методы кражи, взлома и подбора пароля (см. бандитский криптоанализ). Это делает парольный механизм слабозащищенным.
  • Что-то, что мы имеем — устройство аутентификации. Здесь важен факт обладания субъектом каким-то уникальным предметом. Это может быть личная печать, ключ от замка, для компьютера это файл данных, содержащих характеристику. Характеристика часто встраивается в специальное устройство аутентификации, например, пластиковая карта, смарт-карта. Для злоумышленника заполучить такое устройство становится более проблематично, чем взломать пароль, а субъект может сразу же сообщить в случае кражи устройства. Это делает данный метод более защищенным, чем парольный механизм, однако, стоимость такой системы более высокая.
  • Что-то, что является частью нас — биометрика. Характеристикой является физическая особенность субъекта. Это может быть портрет, отпечаток пальца или ладони, голос или особенность глаза. С точки зрения субъекта, данный метод является наиболее простым: не надо ни запоминать пароль, ни переносить с собой устройство аутентификации. Однако, биометрическая система должна обладать высокой чувствительностью, чтобы подтверждать авторизованного пользователя, но отвергать злоумышленника со схожими биометрическими параметрами. Также стоимость такой системы довольно велика. Но несмотря на свои минусы, биометрика остается довольно перспективным фактором.

Способы аутентификации

Аутентификация по многоразовым паролям

Простая аутентификация имеет следующий общий алгоритм:

  1. Субъект запрашивает доступ в систему и вводит личный идентификатор и пароль
  2. Введенные уникальные данные поступают на сервер аутентификации, где сравниваются с эталонными
  3. При совпадении данных с эталонными, аутентификация признается успешной, при различии — субъект перемещается к 1-му шагу

Введённый субъектом пароль может передаваться в сети двумя способами:

  • Незашифрованно, в открытом виде, на основе протокола парольной аутентификации (Password Authentication Protocol, PAP)
  • С использованием шифрования SSL или TLS. В этом случае уникальные данные, введённые субъектом передаются по сети защищенно.

Защищенность

С точки зрения максимальной защищенности, при хранении и передаче паролей следует использовать однонаправленные функции. Обычно для этих целей используются криптографически стойкие хэш-функции. В этом случае на сервере хранится только образ пароля. Получив пароль и проделав его хэш-преобразование, система сравнивает полученный результат с эталонным образом, хранящимся в ней. При их идентичности, пароли совпадают. Для злоумышленника, получившего доступ к образу, вычислить сам пароль практически невозможно.

Использование многоразовых паролей имеет ряд существенных минусов. Во-первых, сам эталонный пароль или его хэшированный образ хранятся на сервере аутентификации. Зачастую хранение пароля производится без криптографических преобразований, в системных файлах. Получив доступ к ним, злоумышленник легко доберётся до конфиденциальной информации. Во-вторых, субъект вынужден запоминать (или записывать) свой многоразовый пароль. Злоумышленник может заполучить его, просто применив навыки социальной инженерии, без всяких технических средств. Кроме того, сильно снижается защищенность системы в случае, когда субъект сам выбирает себе пароль. Зачастую это оказывается какое-то слово или комбинация слов, присутствующие в словаре. При достаточном количестве времени злоумышленник может взломать пароль простым перебором. Решением этой проблемы является использование случайных паролей или ограниченность по времени действия пароля субъекта, по истечении которого пароль необходимо поменять.

Базы учетных записей

На компьютерах с ОС семейства UNIX, базой является файл /etc/master.passwd (в дистрибутивах Linux обычно файл /etc/shadow, доступный для чтения только root), в котором пароли пользователей хранятся в виде хеш-функций от открытых паролей, кроме этого в этом же файле хранится информация о правах пользователя. Изначально в Unix-системах пароль (в зашифрованном виде) хранился в файле /etc/passwd, доступном для чтения всем пользователям, что было небезопасно.

На компьютерах с операционной системой Windows NT/2000/XP/2003 (не входящих в домен Windows) такая база данных называется SAM (Security Account Manager — Диспетчер защиты учётных записей). База SAM хранит учётные записи пользователей, включающие в себя все данные, необходимые системе защиты для функционирования. Находится в директории %windir%\system32\config\.

В доменах Windows Server 2000/2003 такой базой является Active Directory.

Однако более надёжным способом хранения аутентификационных данных признано использование специальных аппаратных средств (компонентов).

При необходимости обеспечения работы сотрудников на разных компьютерах (с поддержкой системы безопасности) используют аппаратно-программные системы, позволяющие хранить аутентификационные данные и криптографические ключи на сервере организации. Пользователи свободно могут работать на любом компьютере (рабочей станции), имея доступ к своим аутентификационным данным и криптографическим ключам.

Аутентификация по одноразовым паролям

Заполучив однажды многоразовый пароль субъекта, злоумышленник имеет постоянный доступ к взломанной конфиденциальной информации. Эта проблема решается применением одноразовых паролей (OTP – One Time Password). Суть этого метода - пароль действителен только для одного входа в систему, при каждом следующем запросе доступа - требуется новый пароль. Реализован механизм аутентификации по одноразовым паролям может быть как аппаратно, так и программно.

Технологии использования одноразовых паролей можно разделить на:

  • Использование генератора псевдослучайных чисел, единого для субъекта и системы
  • Использование временных меток вместе с системой единого времени
  • Использование базы случайных паролей, единого для субъекта и для системы

В первом методе используется генератор псевдослучайных чисел с одинаковым значением для субъекта и для системы. Сгенерированный субъектом пароль может передаваться системе при последовательном использовании односторонней функции или при каждом новом запросе, основываясь на уникальной информации из предыдущего запроса.

Во втором методе используются временные метки. В качестве примера такой технологии можно привести SecurID. Она основана на использовании аппаратных ключей и синхронизации по времени. Аутентификация основана на генерации случайных чисел через определенные временные интервалы. Уникальный секретный ключ хранится только в базе системы и в аппаратном устройстве субъекта. Когда субъект запрашивает доступ в систему, ему предлагается ввести PIN-код, а также случайно генерируемое число, отображаемого в этот момент на аппаратном устройстве. Система сопоставляет введенный PIN-код и секретный ключ субъекта из своей базы и генерирует случайное число, основываясь на параметрах секретного ключа из базы и текущего времени. Далее проверяется идентичность сгенерированного числа и числа, введённого субъектом.

Третий метод основан на единой базе паролей для субъекта и системы и высокоточной синхронизации между ними. При этом каждый пароль из набора может быть использован только один раз. Благодаря этому, даже если злоумышленник перехватит используемый субъектом пароль, то он уже будет недействителен.

По сравнению с использованием многоразовых паролей, одноразовые пароли предоставляют более высокую степень защиты.

Многофакторная аутентификация

В последнее время всё чаще применяется, так называемая, расширенная или многофакторная аутентификация. Она построена на совместном использовании нескольких факторов аутентификации. Это значительно повышает защищенность системы.

В качестве примера можно привести использование SIM-карт в мобильных телефонах. Субъект вставляет аппаратно свою карту (устройство аутентификации) в телефон и при включении вводит свой PIN-код (пароль).

Также, к примеру в некоторых современных ноутбуках присутствует сканер отпечатка пальца. Таким образом, при входе в систему субъект должен пройти эту процедуру (биометрика), а потом ввести пароль.

Выбирая для системы тот или иной фактор или способ аутентификации необходимо прежде всего отталкиваться от требуемой степени защищенности, стоимости построения системы, обеспечения мобильности субъекта.

Можно привести сравнительную таблицу:

Протоколы аутентификации

Процедура аутентификации используется при обмене информацией между компьютерами, при этом используются весьма сложные криптографические протоколы, обеспечивающие защиту линии связи от прослушивания или подмены одного из участников взаимодействия. А поскольку, как правило, аутентификация необходима обоим объектам, устанавливающим сетевое взаимодействие, то аутентификация может быть и взаимной.

Самый простой протокол аутентификации - доступ по паролю (Password Authentication Protocol, PAP). Его суть состоит в том, что вся информация о субъекте (идентификатор и пароль) передается по сети в открытом виде. Это и является главным недостатком PAP, так как злоумышленник может легко получить доступ к передающимся незашифрованным данным.

Более сложные протоколы аутентификации основаны на принципе "запрос-ответ", например, протокол CHAP (Challenge-Handshake Authentication Protocol). Работа протокола типа "запрос-ответ" может состоять минимум из четырех стадий:

Сам уникальный ключ, на основе которого производится шифрование и с одной, и с другой стороны, не передается по сети, следовательно, злоумышленник не сможет его перехватить. Но субъект должен обладать собственным вычислительным шифрующим устройством, например, смарт-карта, мобильный телефон.

Принцип действия протоколов взаимной аутентификации отличаются от протоколов типа "запрос-ответ" незначительно:

Алгоритм, приведенный выше, часто называют рукопожатием. В обоих случаях аутентификация проходит успешно, только если субъект имеет идентичные с системой уникальные ключи.

В операционных системах семейства Windows NT 4 используется протокол NTLM (NT LAN Manager — Диспетчер локальной сети NT). А в доменах Windows 2000/2003 применяется гораздо более совершенный протокол Kerberos.

Сейчас у всех банков, что я знаю, аутентификация на уровне однофакторной, то есть безопасность на уровне нуля. А там, где она вроде бы полноценная двухфакторная, легко сбрасывается до вообще 0-факторной путем звонка с любого номера и диктовки паспортных данных (тинькофф).

Что я имею в виду, говоря, что у всех "аутентификация на уровне однофакторной"? А то, что почти везде есть вход по номеру карты и смс коду. А там где его нет, есть сброс пароля/логина по номеру карты и смс коду. Номер карты не является секретной информацией, поэтому фактором не является.

Соответственно, пытаюсь найти хоть 1 банк в РФ, где есть полноценные 2 фактора при авторизации. И главное, чтобы пароль сбросить дистанционно было невозможно (иначе это 1 фактор).

Раз уж заговорили об этом.

Бывает двухэтапная и двухфакторная.
Если ты вводишь сначала один пароль, затем другой - это двухэтапная.
А разные факторы это то что ты знаешь (пароль), то что ты имеешь (генератор кодов или карта-брелок), то чем являешься (например биометрия).

Тут конечно можно поспорить что СМС это не то что ты знаешь, а вроде как владение телефонным номером, только с этим постоянно какая-то хуйня. То СМС не приходят (или долго приходят), то номер мошенники уведут, перевыпустив симку, то ещё чего может произойти.

Я вяло мечтаю об обслуживании на основе асимметричной криптографии. Приватный ключ у меня (либо в телефоне, либо в отдельной железке), публичный - у сервиса. Без подписи им ничего не сделать. Сброс решается только личным визитом, отправляет по всем ранее указанным контактам уведомление о сбросе, месяц ожидания (а то вдруг это не ты пришёл, надо дать тебе время успеть среагировать), и только после этого регистрируют твой новый ключ.
Заодно такая схема решает любые отмазы от банка "да это вы сами сделали". Ну если я, то покажите мне этот электронный документ подписанный моей электронной подписью.
Но это так, влажные фантазии.

Сброс приватного ключа вряд ли будет делаться в любом офисе.
Вот выпустите вы себе карту ситибанка и отправят вас сбрасывать этот ключ куда-нибудь в Сакраменто)))))

Ну можно ограничить это самыми крупными офисами, но это не главное. Сотрудники банка в любом случае не являются дипломированными проверятелями ху из ху.

Главное тут это именно временная задержка и уведомления. Тебя и опционально круга твоих доверенных лиц, которые могут сообщить банку что это был не ты (и это единственное что им позволено), вдруг ты уже месяц без сознания лежишь.

Внезапно, МИнБ и РСХБ предлагают своим клиентам криптокалькуляторы. Это один из самых надежных способ защиты.

РСХБ предлагал. Я хотел, но нигде в мск такого не оказалось.
Хотя сейчас уже есть возможность делать это всё на основе "приложите карту к NFC". Но почему-то никто не торопится это реализовывать.

Ваши данные защищены ровно до первого сотрудника оператора, решившего поднять копейку на сливе ваших данных, или дубликата сим.

ну если так думать, то вообще никакая защита не поможет и лучше вообще хранить под подушкой. но и там могут украсть\отнять :(

Слегка помогает: оформляете симку на родственника, у которого фамилия отличается от вашей, привязываете к ней кабинет, и используете её только для банкковских операций. Все остальное время она отключенна. А номер для связи с вами указываете основной. И качестве кодового слова указываете фразу на иностранном языке но кириллицей. А не как многие любят: сокращение от фамилии, либо девечью фамилию которую потом в одноклассниках указывают вместе в прочими данными.

Вот это тройная защита. Только вот при выключенном телефоне можно попросту пропустить как у вас уведут сим карту и воспользуются ею

Сделали бы второй фактор - код на email. Сейчас дошло до того, что email защищен лучше, чем личный кабинет в банке 🤦‍♂️

Да, сейчас почти все почты имеют защиты лучше, чем любой рф банк. Такое позорище.

@Альфа-Банк , @Сбер @Тинькофф а есть возможность сделать к телефону usb ключ через usb порт телефона?
Шикарно было бы.

Мне бы хватило авторизации по двум разным смс номерам от двух разных операторов.

Это тоже хорошо, но думаю реализация моей идеи намного проще)

"Нормальный прошаренный клиент просто поставит себе логин по типу "V5lf6>Wkrr~2J!Jy*sUdY%Fs" и пароль по типу "dfrYzn~MiFVpze3kp>rQ@T*n""

всегда удивляли такие наркоманы, и еще меняющие их раз в месяц. У меня на работе парочка таких админов из 80х, стоишь ждешь в итоге полминуты пока это чучело залогинется на сервис. Где то была статья лет 10 назад от майков что г@вно такие коды, просто ебани длинное предложение и пару спец символов, все, не еби себе и другим мозги.

Не вижу проблемы когда у тебя есть менеджер паролей, который сам вставляет всю эту ебанину) Если мне нужно задать пароль, который не может быть сам вставлен, то задаю ебанутое предложение в одну строку с парой спец символов

всегда удивляли такие наркоманы

Это автоматически делается. Не руками же. KeePass-подобный или любой другой менеджер паролей.

Где то была статья лет 10 назад от майков что г@вно такие коды, просто ебани длинное предложение

Не предложение, а набор случайных слов. Буквально 10-15, хватит. Но это как раз имеет смысл когда нет менеджера паролей.

Мой вариант: выбираешь три русских слова и пишешь их латиницей, разбавляя парой тройкой цифр и спецсимволов и регистром (если буквы и так не попали на цифры.

Ну и нах.я здесь регистр? Давай еще б7кв6 тогда р1зб1вл9й цiфр1м4 и потом вспоминай где ты там чего заменил через месяц, очень прям удобно.
Я же говорю наркоманы, впрочем каждый дрочет как хочет, просто не надо свою наркоманию в домене еще внедрять со сменой пароля раз в месяц. Увы и среди админов порой бывают еб@нутые, мир вообще довольно разнообразен.

Работал в Сбере, на поддержке юрлиц, так вот у юриков на тот момент дистанционного сброса пароля не было, забыл пароль - топай ножками в отделение с заявлением на бумаге. И там ещë сверят оттиск печати и подписи.

Да, для юриков пока что безопасность много где норм, на физиков всем похеру)

зато для юриков дубликат сим карты сделать еще проще чем для физиков, я бы сказал вообще легко. весь бюджет - стоимость дешевого одноразового штампа.

Здравствуйте!
Предложение интересное, спасибо. Передадим пожелание разработчикам.

Да хотя бы Google Authenticator или что-то подобное. Не нужно заморачиваться с USB.

Аннотация: В данной лекции рассматриваются технические меры повышения защищенности систем. В теоретической части изучаются методы, лежащие в основе соответствующих средств и механизмов в аспектах идентификации и аутентификации. Приводятся конкретные настройки операторов.

В данном разделе будут рассмотрены некоторые технические меры повышения защищенности систем. Выбор рассматриваемых мер обусловлен возможностью их реализации встроенными средствами операционных систем семейства Microsoft Windows . Соответственно, уровень защищенности может быть повышен без дополнительных затрат на специализированные средства защиты.

В теоретической части курса будут методы, лежащие в основе соответствующих средств и механизмов. В лабораторных работах рассматриваются конкретные настройки операционных систем.

Рассматриваемые вопросы можно разделить на две группы:

Идентификация и аутентификация

Идентификация - присвоение пользователям идентификаторов (уникальных имен или меток) под которыми система "знает" пользователя. Кроме идентификации пользователей, может проводиться идентификация групп пользователей, ресурсов ИС и т.д. Идентификация нужна и для других системных задач, например, для ведения журналов событий. В большинстве случаев идентификация сопровождается аутентификацией. Аутентификация - установление подлинности - проверка принадлежности пользователю предъявленного им идентификатора. Например, в начале сеанса работы в ИС пользователь вводит имя и пароль . На основании этих данных система проводит идентификацию ( по имени пользователя) и аутентификацию (сопоставляя имя пользователя и введенный пароль ).

Система идентификации и аутентификации является одним из ключевых элементов инфраструктуры защиты от несанкционированного доступа (НСД) любой информационной системы. В соответствии с рассмотренной ранее моделью многоуровневой защиты, аутентификация пользователя компьютера относится к уровню защиты узлов.

Обычно выделяют 3 группы методов аутентификации.

  1. Аутентификация по наличию у пользователя уникального объекта заданного типа. Иногда этот класс методов аутентификации называют по-английски "I have" ("у меня есть"). В качестве примера можно привести аутентификацию с помощью смарт-карт или электронных USB-ключей.
  2. Аутентификация, основанная на том, что пользователю известна некоторая конфиденциальная информация - "I know" ("я знаю"). Например, аутентификация по паролю. Более подробно парольные системы рассматриваются далее в этом разделе.
  3. Аутентификация пользователя по его собственным уникальным характеристикам - "I am" ("я есть"). Эти методы также называются биометрическими.

Нередко используются комбинированные схемы аутентификации, объединяющие методы разных классов. Например, двухфакторная аутентификация - пользователь предъявляет системе смарт-карту и вводит пин-код для ее активации.

Наиболее распространенными на данный момент являются парольные системы аутентификации . У пользователя есть идентификатор и пароль , т.е. секретная информация , известная только пользователю (и возможно - системе), которая используется для прохождения аутентификации.

В зависимости от реализации системы, пароль может быть одноразовым или многоразовым. Операционные системы, как правило, проводят аутентификацию с использованием многоразовых паролей. Совокупность идентификатора, пароля и, возможно, дополнительной информации, служащей для описания пользователя составляют учетную запись пользователя.

Если нарушитель узнал пароль легального пользователя, то он может, например, войти в систему под его учетной записью и получить доступ к конфиденциальным данным. Поэтому безопасности паролей следует уделять особой внимание.

Как отмечалось при рассмотрении стандарта ISO 17799 , рекомендуется, чтобы пользователи системы подписывали документ о сохранении конфиденциальности пароля. Но нарушитель также может попытаться подобрать пароль , угадать его, перехватить и т.д. Рассмотрим некоторые рекомендации по администрированию парольной системы, позволяющие снизить вероятность реализации подобных угроз.

  1. Задание минимальной длины используемых в системе паролей. Это усложняет атаку путем подбора паролей. Как правило, рекомендуют устанавливать минимальную длину в 6-8 символов.
  2. Установка требования использовать в пароле разные группы символов - большие и маленькие буквы, цифры, специальные символы. Это также усложняет подбор.
  3. Периодическая проверка администраторами безопасности качества используемых паролей путем имитации атак , таких как подбор паролей "по словарю" (т.е. проверка на использование в качестве пароля слов естественного языка и простых комбинаций символов, таких как "1234").
  4. Установка максимального и минимального сроков жизни пароля, использование механизма принудительной смены старых паролей.
  5. Ограничение числа неудачных попыток ввода пароля (блокирование учетной записи после заданного числа неудачных попыток войти в систему).
  6. Ведение журнала истории паролей, чтобы пользователи, после принудительной смены пароля, не могли вновь выбрать себе старый, возможно скомпрометированный пароль.

Современные операционные системы семейства Windows позволяют делать установки, автоматически контролирующие выполнение требований 1,2,4-6. При использовании домена Windows , эти требования можно распространить на все компьютеры, входящие в домен и таким образом повысить защищенность всей сети.

Но при внедрении новых механизмов защиты могут появиться и нежелательные последствия. Например, требования "сложности" паролей могут поставить в тупик недостаточно подготовленного пользователя. В данном случае потребуется объяснить, что с точки зрения операционной системы Windows надежный пароль содержит 3 из 4 групп символов (большие буквы, малые буквы, цифры, служебные знаки). Аналогичным образом, надо подготовить пользователей и к внедрению блокировки учетных записей после нескольких неудачных попыток ввода пароля. Требуется объяснить пользователям, что происходит, а сами правила блокировки должны быть хорошо продуманы. Например, если высока вероятность того, что пользователь заблокирует свою запись в период отсутствия администратора, лучше ставить блокировку не насовсем, а на какой-то срок (30 минут, час и т.д.).

Это приводит к тому, что должна быть разработана политика управления паролями , сопровождающие ее документы, а потом уже проведено внедрение.

При использовании ОС семейства Windows , выявить учетные записи со слабыми или отсутствующими паролями можно, например, с помощью утилиты Microsoft Baseline Security Analyzer . Она же позволяет выявить и другие ошибки администрирования. Вопросам использования этой утилиты, а также настройке политики паролей посвящена лабораторная работа № 3.

Протокол Kerberos

Протокол Kerberos был разработан в Массачусетском технологическом институте в середине 1980-х годов и сейчас является фактическим стандартом системы централизованной аутентификации и распределения ключей симметричного шифрования. Поддерживается операционными системами семейства Unix, Windows (начиная с Windows '2000), есть реализации для Mac OS.

В сетях Windows (начиная с Windows '2000 Serv.) аутентификация по протоколу Kerberos v.5 ( RFC 1510) реализована на уровне доменов. Kerberos является основным протоколом аутентификации в домене, но в целях обеспечения совместимости c с предыдущими версиями, также поддерживается протокол NTLM .

Перед тем, как рассмотреть порядок работы Kerberos, разберем зачем он изначально разрабатывался. Централизованное распределение ключей симметричного шифрования подразумевает, что у каждого абонента сети есть только один основной ключ , который используется для взаимодействия с центром распределения ключей (сервером ключей). Чтобы получить ключ шифрования для защиты обмена данными с другим абонентом, пользователь обращается к серверу ключей, который назначает этому пользователю и соответствующему абоненту сеансовый симметричный ключ .

Протокол Kerberos обеспечивает распределение ключей симметричного шифрования и проверку подлинности пользователей, работающих в незащищенной сети. Реализация Kerberos - это программная система, построенная по архитектуре "клиент- сервер ". Клиентская часть устанавливается на все компьютеры защищаемой сети, кроме тех, на которые устанавливаются компоненты сервера Kerberos. В роли клиентов Kerberos могут, в частности, выступать и сетевые серверы (файловые серверы, серверы печати и т.д.).

Серверная часть Kerberos называется центром распределения ключей (англ. Key Distribution Center , сокр. KDC ) и состоит из двух компонент :

  • сервер аутентификации (англ. Authentication Server , сокр. AS);
  • сервер выдачи разрешений (англ. Ticket Granting Server, сокр. TGS ).

Каждому субъекту сети сервер Kerberos назначает разделяемый с ним ключ симметричного шифрования и поддерживает базу данных субъектов и их секретных ключей. Схема функционирования протокола Kerberos представлена на рис. 5.1.

Протокол Kerberos

Пусть клиент C собирается начать взаимодействие с сервером SS (англ. Service Server - сервер , предоставляющий сетевые сервисы). В несколько упрощенном виде, протокол предполагает следующие шаги [19, 20]:

Клиент C посылает серверу аутентификации AS свой идентификатор c (идентификатор передается открытым текстом).

  • KC - основной ключ C ;
  • KC_TGS - ключ, выдаваемый C для доступа к серверу выдачи разрешений TGS ;
  • - Ticket Granting Ticket - билет на доступ к серверу выдачи разрешений

= tgs ,t1,p1, KC_TGS> , где tgs - идентификатор сервера выдачи разрешений, t1 - отметка времени, p1 - период действия билета.

\< \cdot \></p>
<p>Запись K_
здесь и далее означает, что содержимое фигурных скобок зашифровано на ключе KX .

На этом шаге сервер аутентификации AS , проверив, что клиент C имеется в его базе, возвращает ему билет для доступа к серверу выдачи разрешений и ключ для взаимодействия с сервером выдачи разрешений. Вся посылка зашифрована на ключе клиента C . Таким образом, даже если на первом шаге взаимодействия идентификатор с послал не клиент С , а нарушитель X , то полученную от AS посылку X расшифровать не сможет.

Получить доступ к содержимому билета TGT не может не только нарушитель, но и клиент C , т.к. билет зашифрован на ключе, который распределили между собой сервер аутентификации и сервер выдачи разрешений.

где 1> - аутентификационный блок - Aut1 = 2> , t2 - метка времени; ID - идентификатор запрашиваемого сервиса (в частности, это может быть идентификатор сервера SS ).

Клиент C на этот раз обращается к серверу выдачи разрешений ТGS . Он пересылает полученный от AS билет, зашифрованный на ключе KAS_TGS , и аутентификационный блок, содержащий идентификатор c и метку времени, показывающую, когда была сформирована посылка.Сервер выдачи разрешений расшифровывает билет TGT и получает из него информацию о том, кому был выдан билет, когда и на какой срок, ключ шифрования, сгенерированный сервером AS для взаимодействия между клиентом C и сервером TGS . С помощью этого ключа расшифровывается аутентификационный блок. Если метка в блоке совпадает с меткой в билете, это доказывает, что посылку сгенерировал на самом деле С (ведь только он знал ключ KC_TGS и мог правильно зашифровать свой идентификатор). Далее делается проверка времени действия билета и времени отправления посылки 3 ). Если проверка проходит и действующая в системе политика позволяет клиенту С обращаться к клиенту SS , тогда выполняется шаг 4 ).

где KC_SS - ключ для взаимодействия C и SS , TGS > - Ticket Granting Service - билет для доступа к SS (обратите внимание, что такой же аббревиатурой в описании протокола обозначается и сервер выдачи разрешений). TGS > =3,p2, KC_SS > .

Сейчас сервер выдачи разрешений TGS посылает клиенту C ключ шифрования и билет, необходимые для доступа к серверу SS . Структура билета такая же, как на шаге 2): идентификатор того, кому выдали билет; идентификатор того, для кого выдали билет; отметка времени; период действия ; ключ шифрования.

Если все шаги выполнены правильно и все проверки прошли успешно, то стороны взаимодействия C и SS , во-первых, удостоверились в подлинности друг друга, а во-вторых, получили ключ шифрования для защиты сеанса связи - ключ KC_SS .

Нужно отметить, что в процессе сеанса работы клиент проходит шаги 1) и 2) только один раз. Когда нужно получить билет на доступ к другому серверу (назовем его SS1 ), клиент С обращается к серверу выдачи разрешений TGS с уже имеющимся у него билетом, т.е. протокол выполняется начиная с шага 3).

Для взаимодействия между областями, должна быть осуществлена взаимная регистрация серверов Kerberos, в процессе которой сервер выдачи разрешений одной области регистрируется в качестве клиента в другой области (т.е. заносится в базу сервера аутентификации и разделяет с ним ключ ).

Взаимодействие между Kerberos-областями

Кроме рассмотренных, Kerberos предоставляет еще ряд дополнительных возможностей. Например, указанный в структуре билета параметр p (период времени) задается парой значений "время начала действия" - "время окончания действия", что позволяет получать билеты отложенного действия .

Имеется тип билета "с правом передачи", что позволяет, например, серверу выполнять действия от имени обратившегося к нему клиента.

Два слова об аутентификации. Если Kerberos - протокол распределения ключей , корректно ли использовать его для аутентификации?! Но как отмечалось выше, если все стадии протокола прошли успешно, взаимодействующие стороны не только распределили ключ , но и убедились в подлинности друг друга, иными словами - аутентифицировали друг друга.

Что касается реализации протокола Kerberos в Windows , то надо отметить следующее.

  1. Ключ пользователя генерируется на базе его пароля. Таким образом, при использовании слабых паролей эффект от надежной защиты процесса аутентификации будет сведен к нулю.
  2. В роли Kerberos-серверов выступают контроллеры домена, на каждом из которых должна работать служба Kerberos Key Distribution Center ( KDC ). Роль хранилища информации о пользователях и паролях берет на себя служба каталога Active Directory. Ключ, который разделяют между собой сервер аутентификации и сервер выдачи разрешений формируется на основе пароля служебной учетной записи krbtgt - эта запись автоматически создается при организации домена и всегда заблокирована.
  3. Microsoft в своих ОС использует расширение Kerberos для применения криптографии с открытым ключом. Это позволяет осуществлять регистрацию в домене и с помощью смарт-карт, хранящих ключевую информацию и цифровой сертификат пользователя .
  4. Использование Kerberos требует синхронизации внутренних часов компьютеров, входящих в домен Windows.

Для увеличения уровня защищенности процесса аутентификации пользователей, рекомендуется отключить использование менее надежного протокола NTLM и оставить только Kerberos (если использования NTLM не требуют устаревшие клиентские ОС).

Кроме того, рекомендуется запретить администраторским учетным записям получать билеты "с правом передачи" (это убережет от некоторых угроз, связанных автоматическим запуском приложений от имени таких записей).

Фото: Shutterstock

Взломать или забыть можно даже самый сложный пароль. Чтобы ваши данные не украли, в соцсетях, почте и любых других сервисах стоит использовать двухфакторную идентификацию или 2FA. Разбираемся, как ей пользоваться

Что такое двухфакторная аутентификация?

Эта функция серьезно повышает уровень безопасности. Злоумышленникам, которым по разным причинам могут пригодиться ваши данные, гораздо сложнее получить доступ одновременно к вашему паролю, а также телефону, электронной почте или другому методу аутентификации. Если использовать только пароль, то аккаунт остается уязвимым. Пароли легко утекают в Сеть, и далеко не всегда по вине пользователя.

Как можно подтвердить свою личность?

Большинство приложений и сервисов предлагают пользователю на выбор такие варианты двойной аутентификации:

Кроме того, есть еще несколько видов подтверждения входа, которые используют реже:

  • Физический ключ безопасности: это устройство в виде USB-флэшки (для использования со смартфоном ее иногда оборудуют NFC и Bluetooth-интерфейсами) [2]. Такой ключ можно использовать для входа в те же соцсети, но столь серьезный подход, скорее, имеет смысл для хранения очень важных данных.
  • Подтверждение личности с помощью биометрии. Этот способ пока не используется в широко распространенных сервисах типа соцсетей.

Гарантирует ли двухфакторная аутентификация абсолютную безопасность?

Что, если второе устройство потеряли?

Обычно сервисы всегда предусматривают некий альтернативный способ аутентификации. Но иногда пользователю в таких случаях приходится обратиться в службу поддержки.

Как и где стоит включить двухфакторную аутентификацию:


Далее, как и в полной версии, выбираете способ подтверждения входа и восстановления доступа.


Как подключить двухфакторную аутентификацию в Facebook


В приложении двухфакторная аутентификация подключается таким же образом.

Как подключить двухфакторную аутентификацию в Google


Дальше необходимо выбрать способ, которым вы будете получать коды в дальнейшем: SMS, звонок, резервные коды.


Дальше нужно убедиться, что выбранный способ аутентификации работает.


Подтвердите, что вы действительно хотите подключить эту функцию.



Как подключить двухфакторную аутентификацию в Telegram

В Telegram двухэтапная аутентификация настраивается нестандартно: при входе с каждого нового устройства пользователю и так нужно вводить код, полученный в SMS. Поэтому второй этап аутентификации, который можно подключить — это как раз обычный пароль.


Дальше вы придумываете новый пароль, подсказку к нему (при желании) и вводите свой адрес электронной почты, чтобы получить на нее код для подтверждения этой операции.


Как подключить двухфакторную аутентификацию в Instagram


Кроме того, двухэтапную аутентификацию можно подключить для Apple ID (здесь) и для сервисов Microsoft (здесь).

Читайте также: